精英家教网 > 高中数学 > 题目详情

【题目】已知函数处的切线方程为.

1)求的值;

2)当时,恒成立,求整数的最大值.

【答案】122

【解析】

(1)先求导,将代入导函数得切线斜率,将代入原函数得切点纵坐标,再运用点斜式求出切线方程;

(2)法一:可知,先分离参数,构造新函数,求出单调性,通过求出的最值,便得到的最大值.

法二:先通过构造新函数,求出单调区间,再用分离参数,利用基本不等式求出的最大值.

1)∵处的切线方程为

解得

2)解法1:∵,由

,则

,则

上单调递增,

,使得,即

上递减,在上递增

,∵

,∴整数的最大值为2

解法2:令

显然上递增

时,上递增,,合题意

时,,则,即

上递减,在上递增

,而恒成立

,∴.又∵.

,使得,不合题意舍去.

.

上递减,在上递增

,合题意

∴整数的最大值为2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知正三棱柱中,所有棱长都是3,点DE分别是线段上的点,.

1)试确定点E的位置,使得平面,并证明;

2)若直线与平面所成角的正弦值为,求二面角的余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x),若对任意x1(0),总存在x2使得,则实数a的范围 _____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点分别是椭圆的上、下顶点,以为直径作圆,直线与椭圆交于两点,与圆交于两点.

1)若直线的倾斜角为,求为坐标原点)的面积;

2)若点分别在直线上,且,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)如果方程有两个不相等的解,且,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且.

1)求

2)证明:存在唯一极大值点,且.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一只红玲虫的产卵数和温度有关.现收集了7组观测数据如下表:

温度

21

23

25

27

29

32

35

产卵数/

7

11

21

24

66

115

325

为了预报一只红玲虫在时的产卵数,根据表中的数据建立了的两个回归模型.模型①:先建立的指数回归方程,然后通过对数变换,把指数关系变为;模型②:先建立的二次回归方程,然后通过变换,把二次关系变为的线性回归方程:.

1)分别利用这两个模型,求一只红玲虫在时产卵数的预测值;

2)你认为用哪个模型得到的预测值更可靠?并说明理由.(参考数据:模型①的残差平方和,模型①的相关指数;模型②的残差平方和,模型②的相关指数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】生男生女都一样,女儿也是传后人.由于某些地区仍然存在封建传统思想,头胎的男女情况可能会影响生二孩的意愿,现随机抽取某地200户家庭进行调查统计.200户家庭中,头胎为女孩的频率为0.5,生二孩的频率为0.525,其中头胎生女孩且生二孩的家庭数为60.

1)完成下列列联表,并判断能否有95%的把握认为是否生二孩与头胎的男女情况有关;

生二孩

不生二孩

合计

头胎为女孩

60

头胎为男孩

合计

200

2)在抽取的200户家庭的样本中,按照分层抽样的方法在头胎生女孩家庭中抽取了5户,进一步了解情况,在抽取的5户中再随机抽取3户,求这3户中恰好有2户生二孩的概率.

附:

0.15

0.05

0.01

0.001

2.072

3.841

6.635

10.828

(其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一种叫“对对碰”的游戏,游戏规则如下:一轮比赛中,甲乙两人依次轮流抛一枚质地均匀的硬币,甲先抛,每人抛3次,得分规则如下:甲第一次抛得分,再由乙第一次抛,若出现朝上的情况与甲第一次抛的朝上的情况一样,则本次得2分,否则得1分;再甲第二次抛,若出现朝上的情况与乙第一次抛的朝上的情况一样,则本次得分是乙第一次得分的基础上加1分,否则得1分;再乙第二次抛,若出现朝上的情况与甲第二次抛的朝上的情况一样,则本次得分是甲第二次得分的基础上加1分,否则得1分;按此规则,直到游戏结束.记甲乙累计得分分别为.

1)一轮游戏后,求的概率;

2)一轮游戏后,经计算得乙的数学期望,要使得甲的数学期望,求的最小值.

查看答案和解析>>

同步练习册答案