【题目】已知函数,且.
(1)求;
(2)证明:存在唯一极大值点,且.
【答案】(1);(2)证明见解析.
【解析】
(1)根据函数解析式变形为,由可知.构造函数,并求得其导函数,通过讨论的不同取值范围,分析函数的单调性及最值,即可求得.
(2)求得导函数.并构造函数,求得.根据导函数判断出的单调区间,并求得与,从而可知唯一的零点在.即,并判断的单调情况,即可得知存在唯一极大值点.因为,代入方程表示为,再代入即可结合证明不等式成立.
(1)因为,且,所以,
构造函数,则,又,
若,则,则在上单调递增,则当时,矛盾,舍去;
若,则,则当时,,则在上单调递增,则矛盾,舍去;
若,则,则当时,,
则在上单调递减,则矛盾,舍去;
若,则当时,,当时,,
则在上单调递减,在上单调递增,
故,则,满足题意;
综上所述,.
(2)证明:由(1)可知,则,
构造函数,则,
又在上单调递增,且,
故当时,,当时,,
则在上单调递减,在上单调递增,
又,,又,
结合零点存在性定理知,在区间存在唯一实数,使得,
当时,,当时,,当时,,
故在单调递增,在单调递减,在单调递增,
故存在唯一极大值点,因为,所以,
故,
因为,所以.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xoy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系。已知曲线C的极坐标方程为,过点的直线l的参数方程为(为参数),直线l与曲线C交于M、N两点。
(1)写出直线l的普通方程和曲线C的直角坐标方程:
(2)若成等比数列,求a的值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,昆明加大了特色农业建设,其中花卉产业是重要组成部分.昆明斗南毗邻滇池东岸,是著名的花都,有“全国10支鲜花7支产自斗南”之说,享有“金斗南”的美誉.为进一步了解鲜花品种的销售情况,现随机抽取甲、乙两户斗南花农,对其连续5日的玫瑰花日销售情况进行跟踪调查,将日销售量作为样本绘制成茎叶图如下,单位:扎(20支/扎).
(1)求甲、乙两户花农连续5日的日均销售量,并比较两户花农连续5日销售量的稳定性;
(2)从两户花农连续5日的销售量中各随机抽取一个,求甲的销售量比乙的销售量高的概率·
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,长轴长为4,且过点.
(1)求椭圆C的方程;
(2)过的直线l交椭圆C于两点,过A作x轴的垂线交椭圆C与另一点Q(Q不与重合).设的外心为G,求证为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】足球是世界普及率最高的运动,我国大力发展校园足球.为了解本地区足球特色学校的发展状况,社会调查小组得到如下统计数据:
年份x | 2014 | 2015 | 2016 | 2017 | 2018 |
足球特色学校y(百个) | 0.30 | 0.60 | 1.00 | 1.40 | 1.70 |
(1)根据上表数据,计算y与x的相关系数r,并说明y与x的线性相关性强弱.
(已知:,则认为y与x线性相关性很强;,则认为y与x线性相关性一般;,则认为y与x线性相关性较):
(2)求y关于x的线性回归方程,并预测A地区2020年足球特色学校的个数(精确到个).
参考公式和数据:,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的方程为.
(1)求曲线的直角坐标方程;
(2)设曲线与直线交于点,点的坐标为(3,1),求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com