精英家教网 > 高中数学 > 题目详情

【题目】足球是世界普及率最高的运动,我国大力发展校园足球.为了解本地区足球特色学校的发展状况,社会调查小组得到如下统计数据:

年份x

2014

2015

2016

2017

2018

足球特色学校y(百个)

0.30

0.60

1.00

1.40

1.70

1)根据上表数据,计算yx的相关系数r,并说明yx的线性相关性强弱.

(已知:,则认为yx线性相关性很强;,则认为yx线性相关性一般;,则认为yx线性相关性较):

2)求y关于x的线性回归方程,并预测A地区2020年足球特色学校的个数(精确到个).

参考公式和数据:

.

【答案】(1) yx线性相关性很强

(2),244

【解析】

1)根据题意计算出r,再比较即得解;(2)根据已知求出线性回归方程,再令x=2020即得解.

(1)由题得

所以

yx线性相关性很强.

(2)

关于的线性回归方程是.

时,

即该地区2020年足球特色学校有244个.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1),求函数的单调递增区间;

(2)在区间内至少存在一个实数,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为F,准线为lAC上一点,已知以F为圆心,FA为半径的圆FlM.N.

1)若的面积为,求抛物线方程;

2)若A.M.F三点在同一直线m上,直线nm平行,且nC只有一个公共点,求坐标原点到直线nm距离的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为的正方形.且,点的中点.

1)求证:

2)求平面与平面所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面ABCD是直角梯形,,,侧棱平面ABCD,且.

1)求证:平面平面;

2)求平面与平面所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,过点的动直线交抛物线于两点

(1)当恰为的中点时,求直线的方程;

(2)抛物线上是否存在一个定点,使得以弦为直径的圆恒过点?若存在,求出点的坐标;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数,且),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.

(1)将曲线的参数方程化为普通方程,并将曲线的极坐标方程化为直角坐标方程;

(2)求曲线与曲线交点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,一个焦点为

1)求椭圆的方程;

2)若直线轴交于点,与椭圆交于两点,线段的垂直平分线与轴交于点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

中,内角对边的边长分别是,已知

的面积等于,求

,求的面积.

查看答案和解析>>

同步练习册答案