精英家教网 > 高中数学 > 题目详情
18.二项式${(x-\frac{2}{x})}^{6}$的展开式中各项系数和是(  )
A.1B.0C.-1D.2

分析 直接在二项式中取x=1求得二项式${(x-\frac{2}{x})}^{6}$的展开式中各项系数和.

解答 解:取x=1,可得${(x-\frac{2}{x})}^{6}$=$(1-\frac{2}{1})^{6}=1$,
∴二项式${(x-\frac{2}{x})}^{6}$的展开式中各项系数和是1.
故选:A.

点评 本题考查二项式系数的性质,是简单的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.计算:
(1)$\frac{(-1+i)(2+i)}{{i}^{3}}$
(2)$\frac{1-i}{(1+i)^{2}}$+$\frac{1+i}{(1-i)^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow{b}$=(cosβ,sinβ),|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{2}$.
(1)求$\overrightarrow{a}$•$\overrightarrow{b}$的值;
(2)若0<α<$\frac{π}{2}$,-$\frac{π}{2}$<β<0,且sinβ=-$\frac{3}{5}$,求sin(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.数列{an}的通项公式an=2n-1,则$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{n}{2n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow{m}$=(2cosx+2$\sqrt{3}$sinx,1),向量$\overrightarrow{n}$=(cosx,-y),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(Ⅰ)将y表示为x的函数f(x),并求f(x)的单调递增区间;
(Ⅱ)已知A,B,C分别为△ABC的三个内角,若f($\frac{A}{2}$)=3,且sinBsinC=$\frac{3}{4}$,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}满足an+1=$\frac{{a}_{n}}{{2}_{{a}_{n}+1}}$,a1=1(n∈N+
(1)试猜想{an}的通项公式并用数学归纳法证明;
(2)令bn=anan+1,记数列{bn}的前n项和为Sn,求证:$\frac{1}{3}$≤Sn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等差数列{an}中,a2=8,其前10项的和S10=185,
(1)求数列{an}的通项公式;
(2)若从数列{an}中依次取第3项,第9项,第27项…第3n项…并按原来的顺序组成一个新的数列{bn},求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.根据某电子商务平台的调查统计显示,参与调查的1000位上网购物者的年龄情况如图显示.
(1)已知[30,40)、[40,50)、[50,60)三个年龄段的上网购物者人数成等差数列,求a,b的值;
(2)该电子商务平台将年龄在[30,50)之间的人群定义为高消费人群,其他的年龄段定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放100元的代金券,现采用分层抽样的方式从参与调查的1000位上网购物者中抽取5人,并在这5人中随机抽取3人进行回访,求此三人获得代金券总和为200元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.数列$\frac{3}{2},\frac{5}{3},\frac{7}{4},\frac{9}{5}$,…的一个通项公式为an=$\frac{2n+1}{n+1}$.

查看答案和解析>>

同步练习册答案