精英家教网 > 高中数学 > 题目详情
18.设集合I=R,集合M={x|x<1},N={x|-1<x<2},则集合{x|-1<x<1}等于(  )
A.M∪NB.M∩NC.(∁IM)∪ND.(∁IM)∩N

分析 由M与N,求出两集合的交集、并集,M补集与N的并集,M补集与N的交集即可.

解答 解:∵I=R,M={x|x<1},N={x|-1<x<2},
∴M∩N={x|-1<x<1},
故选:B.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.在三棱锥P-ABC中,PA、PB、PC两两垂直,且PA=3,PB=1,PC=9.设M是底面ABC内一点,定义f(M)=(m、n、p),其中m、n、p分别是三棱锥M-PAB、三棱锥M-PBC、三棱锥M-PCA的体积,若f(M)=($\frac{1}{2}$,x,y),且$\frac{{x}^{2}}{2}$+y2≥a恒成立,则正实数a的最大值为(  )
A.$\frac{4}{3}$B.$\frac{16}{3}$C.$\frac{8}{3}$D.$\frac{7}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.三个实数a,b,c成等比数列,且a+b+c=3,则b的取值范围是(  )
A.[-1,0)B.(0,1]C.[-1,0)∪(0,3]D.[-3,0)∪(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在数列{an}中,已知a1+a2+…+an=2n-1,则an=2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,有$\frac{f(a)+f(b)}{a+b}>0$成立.
(1)判断f(x)在[-1,1]上的单调性,并证明它;
(2)解不等式f(x2)<f(2x);
(3)若f(x)≤m2-2am+1对所有的a∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.写出满足条件{1,3}∪A={1,3,5}的集合A的所有可能情况是{5},{1,5},{3,5},{1,3,5}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列函数中与函数y=x-1相等的是(  )
A.y=($\sqrt{x-1}$)2B.y=$\root{3}{(x-1)^{3}}$C.y=$\sqrt{(x-1)^{2}}$D.y=$\frac{(x-1)^{2}}{x-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.求值:${(lg2)^2}+lg5•lg20+{(\sqrt{2014}-2)^0}+{0.064^{-\frac{2}{3}}}×{(\frac{1}{4})^{-2}}$=102.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若不重合的三条直线相交于一点,则它们最多能确定3个平面.

查看答案和解析>>

同步练习册答案