精英家教网 > 高中数学 > 题目详情
10.下列函数中与函数y=x-1相等的是(  )
A.y=($\sqrt{x-1}$)2B.y=$\root{3}{(x-1)^{3}}$C.y=$\sqrt{(x-1)^{2}}$D.y=$\frac{(x-1)^{2}}{x-1}$

分析 根据两个函数的定义域相同,对应关系也相同,即可它们是相等函数;

解答 解:对于A,函数y=${(\sqrt{x-1})}^{2}$=x-1(x≥1),与函数y=x-1(x∈R)的定义域不同,所以不是相等函数;
对于B,函数y=$\root{3}{{(x-1)}^{3}}$=x-1(x∈R),与函数y=x-1(x∈R)的定义域相同,对应关系也相同,所以是相等函数;
对于C,函数y=$\sqrt{{(x-1)}^{2}}$=|x-1|(x∈R),与函数y=x-1(x∈R)的对应关系不同,所以不是相等函数;
对于D,函数y=$\frac{{(x-1)}^{2}}{x-1}$=x-1(x≠1),与函数y=x-1(x∈R)的定义域不同,所以不是相等函数.
故选:B.

点评 本题考查了判断两个函数是否为同一函数的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.(1)求值:0.064${\;}^{-\frac{1}{3}}$-(-$\frac{1}{8}$)0+16${\;}^{\frac{3}{4}}$+0.25${\;}^{\frac{1}{2}}$+2log36-log312
(2)化简:$\frac{{tan(π+a)cos(2π+a)sin(a-\frac{3π}{2})}}{cos(-a-3π)sin(-3π-a)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知二次函数f(x)满足f(x+1)-f(x)=2x(x∈R),且f(0)=1,
(1)求f(x)的解析式;
(2)当x∈[-1,1]时,求函数g(x)=f(x)-2x的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设集合I=R,集合M={x|x<1},N={x|-1<x<2},则集合{x|-1<x<1}等于(  )
A.M∪NB.M∩NC.(∁IM)∪ND.(∁IM)∩N

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.计算下列各题:
$(1){0.064^{-\frac{1}{3}}}-{(-\frac{7}{8})^0}+{[{(-2)^3}]^{-\frac{4}{3}}}+{16^{-0.75}}+{0.01^{\frac{1}{2}}}$
(2)2lg$\frac{5}{3}-lg\frac{7}{4}+2lg3+\frac{1}{2}$lg49.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{lo{g}_{4}x,x>0}\end{array}\right.$,则f[f(-2)]=(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数y=2x3-mx+1在区间[1,2]上单调,则实数m的取值范围为(-∞,6]∪[24,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设向量$\overrightarrow{a}$=(2,x-1),$\overrightarrow{b}$=(x+1,4),则“x=3”是“$\overrightarrow{a}$∥$\overrightarrow{b}$”的(  )
A.既不充分也不必要条件B.必要而不充分条件
C.充分必要条件D.充分而不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知sinα=-$\frac{3}{5}$,α∈($\frac{3}{2}π,2π$),则tanα等于(  )
A.-$\frac{4}{3}$B.$\frac{4}{3}$C.$-\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

同步练习册答案