分析 (1)根据指数的运算性质和对数的运算性质,计算可得答案;
(2)利用诱导公式及同角的三角函数基本关系式即可化简求值.
解答 解:(1)0.064${\;}^{-\frac{1}{3}}$-(-$\frac{1}{8}$)0+16${\;}^{\frac{3}{4}}$+0.25${\;}^{\frac{1}{2}}$+2log36-log312=$\frac{5}{2}$-1+8+$\frac{1}{2}$+log336-log312=10+log33=10+1=11;
(2)原式=$\frac{tanα•co{s}^{2}α}{(-cosα)sinα}$=$\frac{sinαcosα}{-cosαsinα}$=-1.
点评 本题考查的知识点是指数的运算性质和对数的运算性质,运用诱导公式化简求值,难度不大,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | {1,-1} | B. | {x,y|x=1,y=-1} | C. | {x=1,y=-1} | D. | {(1,-1)} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{3}$ | B. | $\frac{16}{3}$ | C. | $\frac{8}{3}$ | D. | $\frac{7}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=1与g(x)=x0 | B. | f(x)=$\sqrt{x^2}$与g(x)=x | ||
| C. | f(x)=|-x|与g(x)=$\left\{\begin{array}{l}{x}&{x≥0}\\{-x}&{x<0}\end{array}\right.$ | D. | f(x)=$\frac{{{x^2}-1}}{x-1}$与g(x)=x+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,0) | B. | (0,1] | C. | [-1,0)∪(0,3] | D. | [-3,0)∪(0,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=($\sqrt{x-1}$)2 | B. | y=$\root{3}{(x-1)^{3}}$ | C. | y=$\sqrt{(x-1)^{2}}$ | D. | y=$\frac{(x-1)^{2}}{x-1}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com