精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(ax2+x-1)ex,其中e是自然对数的底数,a∈R.
(1)若a=1,求曲线f(x)在点(1,f(1)处的切线方程;
(2)若a<0,求f(x)的单调区间;
(3)若a=-1,函数f(x)的图象与函数g(x)=
1
3
x3+
1
2
x2+m的图象有3个不同的交点,求实数m的取值范围.
∵f(x)=(ax2+x-1)ex,∴f′(x)=(2ax+1)ex+(ax2+x-1)ex=(ax2+2ax+x)ex
(1)当a=1时,f(1)=e,f′(1)=4e,故切线方程为y-e=4e(x-1),
化为一般式可得4ex-y-3e=0;
(2)当a<0时,f′(x)=(ax2+2ax+x)ex=[x(ax+2a+1)]ex
若a=-
1
2
,f′(x)=-
1
2
x2ex<0,函数f(x)在R上单调递减,
a<-
1
2
,当x∈(-∞,-2-
1
a
)和(0,+∞)时,f′(x)<0,函数f(x)单调递减,
当x∈(-2-
1
a
,0)时,f′(x)>0,函数f(x)单调递增;
-
1
2
<a<0,当x∈(-∞,0)和(-2-
1
a
,+∞)时,f′(x)<0,函数f(x)单调递减,
当x∈(0,-2-
1
a
)时,f′(x)>0,函数f(x)单调递增;
(3)若a=-1,f(x)=(-x2+x-1)ex,可得f(x)-g(x)=(-x2+x-1)ex-
1
3
x3-
1
2
x2-m,
原问题等价于f(x)-g(x)的图象与x轴有3个不同的交点,
即y=m与y=(-x2+x-1)ex-
1
3
x3-
1
2
x2的图象有3个不同的交点,
构造函数F(x)=(-x2+x-1)ex-
1
3
x3-
1
2
x2
则F′(x)=(-2x+1)ex+(-x2+x-1)ex-x2-x
=(-x2-x)ex-x2-x=-x(x+1)(ex+1),令F′(x)=0,可解得x=0或-1,
且当x∈(-∞,-1)和(0,+∞)时,F′(x)<0,F(x)单调递减,
当x∈(-1,0)时,F′(x)>0,F(x)单调递增,
故函数F(x)在x=-1处取极小值F(-1)=-
3
e
-
1
6
,在x=0处取极大值F(0)=-1,
要满足题意只需∈(-
3
e
-
1
6
,-1)即可.
故实数m的取值范围为:(-
3
e
-
1
6
,-1)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案