精英家教网 > 高中数学 > 题目详情
设函数f(x)=a2lnx-x2+ax+b,已知a是正实数,若存在实数b,使得e≤f(x)≤e2+1对x∈[1,e]恒成立,试求a的取值范围.
考点:二次函数的性质
专题:函数的性质及应用,导数的概念及应用,导数的综合应用
分析:求出函数f(x)=a2lnx-x2+ax+b的二阶函数,分析函数的凸凹性,进而结合存在实数b,使得e≤f(x)≤e2+1对x∈[1,e]恒成立,可得
e≤f(1)≤e2+1
e≤f(e)≤e2+1
,画出满足约束条件的可行域,利用角点法,可求出a的取值范围.
解答: 解:∵f(x)=a2lnx-x2+ax+b,
∴f′(x)=a2
1
x
-2x+a,
∴f″(x)=-a2
1
x2
-2,
当x>0时,f″(x)<0恒成立,
故函数f(x)为凸函数,
若存在实数b,使得e≤f(x)≤e2+1对x∈[1,e]恒成立,
只需
e≤f(1)≤e2+1
e≤f(e)≤e2+1

e≤a+b-1≤e2+1
e≤a2-e2+ae+b≤e2+1

b≥-a+e+1
b≤-a+e2+2
b≥-a2-ea+e2+e
b≤-a2-ea+2e2+1

满足约束条件的可行域如下图所示:

b=-a+e2+2
b=-a2-ea+e2+e
得a=
-e+1+
e2+2e-7
2
,或a=
-e+1-
e2+2e-7
2

故M点的坐标为(
-e+1+
e2+2e-7
2
,0),
b=-a+e+1
b=-a2-ea+2e2+1
得a=e,或a=1-2e
故N点的坐标为N(e,0)
所以a的取值范围:
-e+1+
e2+2e-7
2
≤a≤e
点评:本题考查的知识点是导数法判断函数凸凹性,运算强度大,变形思路比较小,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知变量x,y满足约束条件
x-y+2≤0 , 
x≥1 , 
x+y-7≤0 , 
则z=x+2y的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M是曲线C上任一点,点M到点F(1,0)的距离比到y轴的距离多1.
(1)求曲线C的方程;
(2)过点P(0,2)的直线L交曲线C于A、B两点,若以AB为直径的圆经过原点O,求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为
2
,且过点(4,-
10
).
(1)求此双曲线的方程;
(2)若点M(3,m)在双曲线上,求证:F1M⊥F2M.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,DP⊥x轴,点M在DP的延长线上,
|DM|
|DP|
=
3
2
,当点P在圆x2+y2=4上运动时,
(1)求:动点M的轨迹E的方程; 
(2)若B(-2,0),C(1,0),A是曲线E上的一个动点,求:
AB
AC
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A,B是非空集合M的两个不同子集,满足:A不是B的子集,且B也不是A的子集.
(1)若M={a1,a2,a3,a4},直接写出所有不同的有序集合对(A,B)的个数;
(2)若M={a1,a2,a3,…,an},求所有不同的有序集合对(A,B)的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),直线x-
3
y+
3
=0经过椭圆C的上顶点B和左焦点F,设椭圆右焦点为F′.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设P是椭圆C上动点,求|4-(|PF′|+|PB|)|的取值范围,并求取最小值时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知△ABC的顶点A(0,-1),B(0,1),直线AC,直线BC的斜率之积等于m(m0),求顶点C的轨迹方程,并判断轨迹为何种圆锥曲线.
(2)已知圆M的方程为:(x+1)2+y2=(2a)2(a>0,且a1),定点N(1,0),动点P在圆M上运动,线段PN的垂直平分线与直线MP相交于点Q,求点Q轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0),过点C(
3
1
2
)且离心率为
3
2

(1)求椭圆E的方程;
(2)设A,B,M是椭圆E上三点,且满足
OM
=
3
5
OA
+
4
5
OB
,点P是线段的中点,试问:点P是否在椭圆G:
x2
2
+2y2=1上?并证明你的结论.

查看答案和解析>>

同步练习册答案