精英家教网 > 高中数学 > 题目详情
(1)已知△ABC的顶点A(0,-1),B(0,1),直线AC,直线BC的斜率之积等于m(m0),求顶点C的轨迹方程,并判断轨迹为何种圆锥曲线.
(2)已知圆M的方程为:(x+1)2+y2=(2a)2(a>0,且a1),定点N(1,0),动点P在圆M上运动,线段PN的垂直平分线与直线MP相交于点Q,求点Q轨迹方程.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)设出顶点C的坐标,由AC,BC所在直线的斜率之积等于m(m≠0)列式整理得到顶点C的轨迹E的方程,然后分m的不同取值范围判断轨迹E为何种圆锥曲线;
(2)连接QN,则|QN|=|QP|,分类讨论,当a>1时,则点N在圆内,有|QN|+|QM|=|QP|+|QM|=|MP|=2a>|MN|;当0<a<1时,则点N在圆外,有|QN|-|QM|=|QP|-|QM|=|MP|=2a<|MN|,即可得出结论.
解答: 解:(1)设点C(x,y),由AC,BC所在直线的斜率之积等于m(m≠0),
得:
y-1
x
y+1
x
=m
,化简得:-mx2+y2=1(x≠0).
当m<-1时,轨迹E表示焦点在y轴上的椭圆,且除去(0,1),(0,-1)两点;
当m=-1时,轨迹E表示以(0,0)为圆心,半径是1的圆,且除去(0,1),(0,-1)两点;
当-1<m<0时,轨迹E表示焦点在x轴上的椭圆,且除去(0,1),(0,-1)两点;
当m>0时,轨迹E表示焦点在y轴上的双曲线,且除去(0,1),(0,-1)两点.
(2)连结QN,则|QN|=|QP|,
当a>1时,则点N在圆内,有|QN|+|QM|=|QP|+|QM|=|MP|=2a>|MN|,
∴点Q的轨迹是以M,N为焦点的椭圆,方程为:
x2
a2
+
y2
a2-1
=1

当0<a<1时,则点N在圆外,有|QN|-|QM|=|QP|-|QM|=|MP|=2a<|MN|,
∴点Q的轨迹是以M,N为焦点的双曲线,方程为:
x2
a2
-
y2
1-a2
=1
点评:本题考查了与直线有关的动点轨迹方程,考查了椭圆的简单几何性质,考查了分类讨论的数学思想方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

执行如图所示的程序框图,则输出S的值是(  )
A、10B、17C、26D、28

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=a2lnx-x2+ax+b,已知a是正实数,若存在实数b,使得e≤f(x)≤e2+1对x∈[1,e]恒成立,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左右两焦点分别为F1,F2,p是椭圆上一点,且在x轴上方,PF2⊥F1F2,PF2=λPF1,λ∈[
1
3
1
2
].
(1)求椭圆的离心率e的取值范围;
(2)当e取最大值时,过F1,F2,P的圆Q的截y轴的线段长为6,求椭圆的方程;
(3)在(2)的条件下,过椭圆右准线l上任一点A引圆Q的两条切线,切点分别为M,N.试探究直线MN是否过定点?若过定点,请求出该定点;否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的焦点在x轴上,O为坐标原点,F是一个焦点,A是一个顶点.若椭圆的长轴长是6,且cos∠OFA=
2
3

(Ⅰ)求椭圆C的方程;
(Ⅱ)求点R(0,1)与椭圆C上的点N之间的最大距离;
(Ⅲ)设Q是椭圆C上的一点,过Q的直线l交x轴于点P(-3,0),交y轴于点M.若
MQ
=2
QP
,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

编写一个程序框图,求二元一次方程组
a1x+b1y=c1
a2x+b2y=c2
(a1b2-a2b1≠0)的解.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆心为F1的圆的方程为(x+2)2+y2=32,F2(2,0),C是圆F1上的动点,F2C的垂直平分线交F1C于M.
(1)求动点M的轨迹方程;
(2)设N(0,2),过点P(-1,-2)作直线l,交M的轨迹于不同于N的A,B两点,直线NA,NB的斜率分别为k1,k2,证明:k1+k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=
x2+2x+2
x2+x+1
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设i是虚数单位,复数
i
1+2i
=
 

查看答案和解析>>

同步练习册答案