精英家教网 > 高中数学 > 题目详情
符号[x]表示不超过x的最大整数,如[2]=2,[π]=3,[-
2
]=-2
,定义函数f(x)=x-[x].设函数g(x)=-
x
3
,若f(x)在区间x∈(0,2)上零点的个数记为a,f(x)与g(x)图象交点的个数记为b,则
b
a
g(x)dx
的值是(  )
A、-2
B、-
4
3
C、-
5
4
D、-
5
2
分析:先画出f(x)=x-[x]的图象,根据图象求出a和b的值得到积分上下限,再根据定积分的运算法则求出所求即可.
解答:精英家教网解:画出函数f(x)=x-[x]的图象.
由图象可知若f(x)在区间x∈(0,2)上零点的个数记为a=1,f(x)与g(x)图象交点的个数记为b=4
b
a
g(x)dx
=∫14-
x
3
)dx=(-
x2
6
)|14=-
5
2

故选D.
点评:本题主要考查了定积分的运算,定积分是一种“和”的极限,蕴含着分割、近似代替,求和、取极限的思想方法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:阅读理解

阅读下列一段材料,然后解答问题:对于任意实数x,符号[x]表示“不超过x的最大整数”,在数轴上,当x是整数,[x]就是x,当x不是整数时,[x]是点x左侧的第一个整数点,这个函数叫做“取整函数”,也叫高斯(Gauss)函数;如[-2]=-2,[-1.5]=-2,[2.5]=2;则[log2
1
4
]+[log2
1
3
]+[log2
1
2
]+[log21]+[log22]+[log23]+[log24]
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

符号[x]表示不超过x的最大整数,如[2.5]=3,[-1.1]=-2,定义函数{x}=x-[x],给出下列四个命题:
①函数{x}的定义域是R,值域为[0,1];
②方程{x}=
1
2
有无数解;
③函数{x}是周期函数;
④函数{x}是增函数.
其中真命题的序号有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知π=3.141 592 653 589 793 2…,定义函数f(x)=[x],其中符号[x]表示“不超过x的最大整数”,则f(1010π)-10f(109π)=
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

对于实数x,符号[x]表示不超过x的最大整数,例如[π]=3,[-1.08]=-2,定义函数f(x)=x-[x],则下列命题中正确的是
②③
②③
(填题号)
①函数f(x)的最大值为1;              
②函数f(x)的最小值为0;
③函数G(x)=f(x)-
12
有无数个零点;    
④函数f(x)是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

符号[x]表示不超过x的最大整数,如[π]=3,[-1.08]=-2,定义函数h(x)=[x]-x,那么下列说法:
①函数h(x)的定义域为R,值域为(-1,0];
②方程h(x)=-
12
有无数解;
③函数h(x)满足h(x+1)=h(x)恒成立;   
④函数h(x)是减函数.
正确的序号是
①②③
①②③

查看答案和解析>>

同步练习册答案