已知数列{an}中,a1=5且an=2an-1+2n-1(n≥2且n∈N*).
(Ⅰ)证明:数列
为等差数列;
(Ⅱ)求数列{ an-1}的前n项和Sn
(1)数列
为首项是2公差是1的等差数列.
(2)Sn=n·2n+1
【解析】(1)根据等差数列的定义
是定值即可.
(2)在第(I)问的基本上求出
的通项公式,进而求出{ an-1}的通项公式,然后根据数列求和的方法求值即可。
解:(Ⅰ)设bn=
,
b1=
=2 ……………………………………………1分
bn+1- bn=
…4分
所以数列
为首项是2公差是1的等差数列.
…………………………5分
(Ⅱ)由(Ⅰ)知,![]()
∴an-1=(n+1)·2n …………………………7分
∵Sn=2·21+3·22+…+n·2n-1+(n+1)·2n ①
∴2Sn=2·22+3·23+…+ n·2n+(n+1)·2n+1 ②……………………9分
①—②,得 - Sn=4+(22+23+…+2n)-(n+1)·2n+1
∴Sn=-4-4(2n+1-1)+(n+1)·2n+1
∴Sn=n·2n+1
科目:高中数学 来源: 题型:
| n+1 |
| 2 |
| 2n |
| an |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com