精英家教网 > 高中数学 > 题目详情

如图,四棱锥中,底面为梯形,,平面平面

(1)求证:平面
(2)求证:
(3)是否存在点,到四棱锥各顶点的距离都相等?并说明理由.

(1)参考解析;(2)参考解析;(3)存在

解析试题分析:(1)线面平面平行的证明,关键是在平面内找到一条直线与要证明的直线平行,根据,再根据直线BC,直线AD的位置关系,即可得线面平行.线面平行还有一种就是转化为面面平行.线面平行的证明就是这两种判断的相互转化.
(2)要证线线垂直转化为线面垂直,由题意可知,通过证明直线AC垂直于平面PAB,由面面垂直可知,只需证明直线AC垂直于AB,在三角形ABC中,由所给条件即可得到AC垂直于AB.
(3)由(2)可知直线PB垂直于平面PAC.所以可得直线PB垂直于直线PC.通过三角形的BCD全等于三角形CBA,所以可得直线BD垂直于DC.所以BC是的斜边,即BC的中点就是所要找的Q点.
试题解析:(1)证明:底面为梯形,
平面平面
所以平面.
(2)证明:设的中点为,连结,在梯形中,

因为
所以 为等边三角形,

所以 四边形为菱形.
因为
所以
所以
又平面平面是交线,
所以 平面
所以 ,即.
(3)解:因为 ,所以平面.
所以,
所以 为直角三角形,.
连结,由(2)知
所以
所以 为直角三角形,.
所以点是三个直角三角形:的共同的斜边的中点,
所以
所以存在点(即点)到四棱锥各顶点的距离都相等. 
考点:1.线面平行的判定.2.线线垂直的判定.3.直角三形的性质.4.归纳推理论证的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知A是△BCD平面外的一点,E,F分别是BC,AD的中点.
 
(1)求证:直线EF与BD是异面直线;
(2)若AC⊥BD,AC=BD,求EF与BD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,,点的中点。

(1)求证:∥平面
(2)如果点的中点,求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在长方体ABCDA1B1C1D1中,底面A1B1C1D1是正方形,OBD的中点,E是棱AA1上任意一点.

(1)证明:BDEC1
(2)如果AB=2,AEOEEC1,求AA1的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.

(1)求证:BC⊥平面PAC
(2)设QPA的中点,G为△AOC的重心,求证:QG∥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,四边形ABCD为正方形,为直角三角形,,且.

(1)证明:平面平面
(2)若AB=2AE,求异面直线BE与AC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四边形都是边长为的正方形,点E是的中点,平面

(1)求证:平面
(2)求证:平面平面
(3)求三棱锥A—BDE的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥S—ABC中,SC⊥平面ABC,点P、M分别是SC和SB的中点,设PM=AC=1,∠ACB=90°,直线AM与直线SC所成的角为60°。

(1)求证:平面MAP⊥平面SAC。
(2)求二面角M—AC—B的平面角的正切值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,M为PC中点.求证:

(1)PA∥平面MDB;
(2)PD⊥BC.

查看答案和解析>>

同步练习册答案