精英家教网 > 高中数学 > 题目详情
如图,等腰直角△ABC中,∠ABC=90°,EA⊥平面ABC,FC∥EA,EA=FC=AB=a.
(Ⅰ)求证:AB⊥平面BCF;
(Ⅱ)证明五点A、B、C、E、F在同一个球面上,并求A、F两点的球面距离.
考点:球面距离及相关计算,直线与平面垂直的判定
专题:综合题,空间位置关系与距离
分析:(Ⅰ)证明AB⊥平面BCF,只需证明AB⊥BC,AB⊥FC;
(Ⅱ)四边形ACFE是矩形知OA=OE=OF=OC=OB=
1
2
AF,即可证明五点A、B、C、E、F在同一个球面上,A、F两点之间的球面距离就是半个大圆的弧长,可求A、F两点的球面距离.
解答: 证明:(Ⅰ)∵∠ABC=90°,
∴AB⊥BC,
又EA⊥平面ABC,FC∥EA,∴AB⊥FC,
∵BC∩FC=C,
∴AB⊥平面BCF;
(Ⅱ)由(Ⅰ)△ABF为直角三角形,且∠ABF=90°,
记EC与AF交于点O,则由四边形ACFE是矩形知OA=OE=OF=OC=OB=
1
2
AF,
故五点A、B、C、E、F在以O为球心,AF为直径的球面上,
故A、F两点之间的球面距离就是半个大圆的弧长,是
3
2
πa
点评:本题考查球面距离及相关计算,考查直线与平面垂直的判定,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a=20.4,b=log20.4,则a,b的大小关系为(  )
A、a>bB、b>a
C、a=bD、不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=a-bcos(2x+
π
6
)(b>0)的最大值为3,最小值为-1.
(1)求a,b的值;
(2)当求x∈[
π
4
5
6
π]时,函数g(x)=4asin(bx-
π
3
)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax2+(b-2)x+3(a≠0),若不等式f(x)>0的解集为(-1,3).
(1)求a,b的值;
(2)若函数f(x)在x∈[m,1]上的最小值为3,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知△ABC中,AB=1,AC=2,∠BAC=120°,点M是边BC上的动点,动点N满足∠MAN=30°,
AM
AN
=3(点A,M,N按逆时针方向排列).
(1)若
AN
AC
(λ>0),求BN的长;
(2)求△ABN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},{bn}满足a1=3,anbn=2,bn+1=an(bn-
2
1+an
),n∈N*
(1)求证:数列{
1
bn
}是等差数列,并求数列{bn}的通项公式;
(2)设数列{cn}满足cn=2an-5,对于任意给定的正整数p,是否存在正整数q,r(p<q<r),使得
1
cp
1
cq
1
cr
成等差数列?若存在,试用p表示q,r;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin2x-cos2x(x∈R).
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)在锐角三角形ABC中,a、b、c分别是角A、B、C的对边,若f(A)=2,c=3,△ABC的面积为3
3
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某良种培育基地正在培育一种小麦新品种A,将其与原有的一个优良品种B进行对照试验,两种小麦共种植了34亩,所得亩产数据(单位:千克)如下.
(Ⅰ)用茎叶图处理现有的数据,有什么优点?
(Ⅱ)通过观察茎叶图,对品种A与B的亩产量及其稳定性进行比较,写出统计结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l与圆C:x2+y2+2x-4y+a=0相交于A,B两点,弦AB的中点为M(0,1).
(1)实数a的取值范围以及直线l方程
(2)若弦AB=2
7
,求圆的方程.

查看答案和解析>>

同步练习册答案