已知椭圆
的方程为
,点
的坐标满足![]()
过点
的直线
与椭圆交于
、
两点,点
为线段
的中点,求:
![]()
(1)点
的轨迹方程;
(2)点
的轨迹与坐标轴的交点的个数.
(Ⅰ)
(Ⅱ)当a=0,b=0,即点P(a,b)为原点时,(a,0)、(0,b)与(0,0)重点,曲线L与坐标轴只有一个交点(0,0)![]()
当a=0且
,即点P(a,b)不在椭圆C外且在除去原点的y轴上时,点(a,0)与(0,0)重合,曲线L与坐标轴有两个交点(0,b)与(0,0)![]()
同理,当b=0且
,即点P(a,b)不在椭圆C外且在除去原点的x轴上时,曲线L与坐标轴有两个交点(a,0)与(0,0)![]()
当
且
,即点P(a,b)在椭圆C内且不在坐标轴上时,曲线L与坐标轴有三个交点(a,0)、(0,b)与(0,0)![]()
(1)设点
、
的坐标分别为
、
,点
的坐标为
.当
时,设直线
的斜率为
,则
的方程为![]()
由已知
(1)
(2)
由(1)得
, (3)
由(2)得
, (4)
由(3)、(4)及
,
,
,
得点Q的坐标满足方程
![]()
(5)
当
时,k不存在,此时l平行于y轴,因此AB的中点Q一定落在x轴上,即Q的坐标为(a,0)
显然点Q的坐标满足方程(5)![]()
综上所述,点Q的坐标满足方程
![]()
![]()
设方程(5)所表示的曲线为L,
则由![]()
得![]()
![]()
因为
,由已知
,
所以当![]()
时,△=0,曲线L与椭圆C有且只有一个交点P(a,b)![]()
当
时,△<0,曲线L与椭圆C没有交点![]()
因为(0,0)在椭圆C内,又在曲线L上,所以曲线L在椭圆C内![]()
故点Q的轨迹方程为![]()
(2)由
解得曲线L与y轴交于点(0,0),(0,b)![]()
由
解得曲线L与x轴交于点(0,0),(a,0)
当a=0,b=0,即点P(a,b)为原点时,(a,0)、(0,b)与(0,0)重点,曲线L与坐标轴只有一个交点(0,0)![]()
当a=0且
,即点P(a,b)不在椭圆C外且在除去原点的y轴上时,点(a,0)与(0,0)重合,曲线L与坐标轴有两个交点(0,b)与(0,0)![]()
同理,当b=0且
,即点P(a,b)不在椭圆C外且在除去原点的x轴上时,曲线L与坐标轴有两个交点(a,0)与(0,0)![]()
当
且
,即点P(a,b)在椭圆C内且不在坐标轴上时,曲线L与坐标轴有三个交点(a,0)、(0,b)与(0,0)![]()
科目:高中数学 来源: 题型:
已知椭圆
的方程为
,点P的坐标为(-a,b).
(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足
,求点
的坐标;
(2)设直线
交椭圆
于
、
两点,交直线
于点
.若
,证明:
为
的中点;
(3)对于椭圆
上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆
上存在不同的两个交点
、
满足
,写出求作点
、
的步骤,并求出使
、
存在的θ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.
已知椭圆
的方程为
,点P的坐标为(-a,b).
(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足
,求点
的坐标;
(2)设直线
交椭圆
于
、
两点,交直线
于点
.若
,证明:
为
的中点;
(3)对于椭圆
上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆
上存在不同的两个交点
、
满足
,写出求作点
、
的步骤,并求出使
、
存在的θ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.
已知椭圆
的方程为
,点P的坐标为(-a,b).
(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足
,求点
的坐标;
(2)设直线
交椭圆
于
、
两点,交直线
于点
.若
,证明:
为
的中点;
(3)对于椭圆
上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆
上存在不同的两个交点
、
满足
,写出求作点
、
的步骤,并求出使
、
存在的θ的取值范围.
查看答案和解析>>
科目:高中数学 来源:2014届山东省聊城市高二第四次模块检测理科数学卷(解析版) 题型:解答题
已知椭圆
的方程为
,点P的坐标为(-a,b).
(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足
,求点
的坐标;
(2)设直线
交椭圆
于
、
两点,交直线
于点
.若
,证明:
为
的中点;
(3)对于椭圆
上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆
上存在不同的两个交点
、
满足
,写出求作点
、
的步骤,并求出使
、
存在的θ的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com