精英家教网 > 高中数学 > 题目详情
9.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率e=$\frac{{\sqrt{6}}}{6}$,焦距为2,O是坐标原点.
(1)求椭圆C的标准方程;
(2)直线y=x+m交椭圆C于A、B两点,若以AB为直径的圆经过O点,求实数m的值.

分析 (1)设椭圆的半焦距为c,列出椭圆的离心率与焦距的方程,求解椭圆的距离,即可得到椭圆方程.
(2)联立直线与椭圆方程,设A(x1,x1+m)、B(x2,x2+m),利用判别式以及韦达定理,通过$\overrightarrow{OA}•\overrightarrow{OB}=0$
整合求解即可.

解答 解:(1)设椭圆的半焦距为c,依题意得$\left\{{\begin{array}{l}{\frac{c}{a}=\frac{{\sqrt{6}}}{6}}\\{2c=2}\end{array}⇒\left\{{\begin{array}{l}{a=\sqrt{6}}\\{c=1}\end{array}}\right.}\right.$,…(4分)
则$b=\sqrt{{a^2}-{c^2}}=\sqrt{5}$,故椭圆C的标准方程为$\frac{x^2}{6}+\frac{y^2}{5}=1$.…(5分)
(2)由$\left\{{\begin{array}{l}{y=x+m}\\{\frac{x^2}{6}+\frac{y^2}{5}=1}\end{array}⇒11{x^2}+12mx+6{m^2}-30=0}\right.$①…(6分)
依题意得①的△=(12m)2-4×11(6m2-30)>0⇒m2<11②…(7分)
设A(x1,x1+m)、B(x2,x2+m)由①得$\left\{{\begin{array}{l}{{x_1}+{x_2}=-\frac{12m}{11}}\\{{x_1}{x_2}=\frac{{6{m^2}-30}}{11}}\end{array}}\right.$③…(8分)
以AB为直径的圆经过O点,则$\overrightarrow{OA}•\overrightarrow{OB}=0$
即$({x}_{1},{x}_{1}+m)({x}_{2},{x}_{2}+m)=2{x}_{1}{x}_{2}+m({x}_{1}+{x}_{2})+{m}^{2}=0$…(10分)
将③代入上式得$\frac{{12{m^2}-60}}{11}-\frac{{12{m^2}}}{11}+{m^2}=0⇒{m^2}=\frac{60}{11}$,这个结果满足②式
故$m=±\frac{{2\sqrt{165}}}{11}$.                                         …(12分)

点评 本题考查直线与椭圆的位置关系的综合应用,椭圆方程的求法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.曲线x2+y2=4与曲线${x^2}+\frac{y^2}{9}=1$的交点个数是4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知动点E在抛物线y2=16x上,过点E作EF垂直于x轴,垂足为F,设$\overrightarrow{EF}=2\overrightarrow{EM}$.
(1)求动点M的轨迹C的方程;
(2)已知点B(1,-2),过点(3,2)的直线L交曲线C于P、Q两点,求证:直线BP与直线BQ的斜率之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在三棱锥S-ABC中,SA⊥平面ABC,AB=1,AC=SA=2,∠BAC=60°,则三棱锥S-ABC的外接球的表面积是(  )
A.B.C.D.12π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.对于函数f(x)=x图象上的任一点M,在函数g(x)=lnx上都存在点N(x0,y0),使$\overrightarrow{OM}•\overrightarrow{ON}=0(O$是坐标原点),则x0必然在下面哪个区间内?(  )
A.$(\frac{1}{e^3},\frac{1}{e^2})$B.$(\frac{1}{e^2},\frac{1}{e})$C.$(\frac{1}{e},\frac{1}{{\sqrt{e}}})$D.$(\frac{1}{{\sqrt{e}}},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.双曲线$\frac{x^2}{3}-\frac{y^2}{6}=1$的离心率e=(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.3D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.对凯里一中高二(1)、高二(2)、高二(3)、高二(4)、高二(5)五个班级调查了解,统计出这五个班级课余参加书法兴趣小组并获校级奖的人数,得出如表:
班级高二(1)高二(2)高二(3)高二(4)高二(5)
班级代号x12345
获奖人数y54231
从表中看出,班级代号x与获奖人数y线性相关.
(1)求y关于x的线性回归方程$\widehaty=\widehatbx+\widehata$;
(2)从以上班级随机选出两个班级,求至少有一个班级获奖人数超过3人的概率.
(附:参考公式:$\widehatb=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一动圆与两圆:x2+y2=1和x2+y2-6x+5=0都外切,则动圆圆心的轨迹为(  )
A.抛物线B.双曲线C.双曲线的一支D.椭圆

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设直线l与平面α相交但不垂直,则下列命题错误的是(  )
A.在平面α内存在直线a与直线l平行B.在平面α内存在直线a与直线l垂直
C.在平面α内存在直线a与直线l相交D.在平面α内存在直线a与直线l异面

查看答案和解析>>

同步练习册答案