【题目】在平面直角坐标系
中,已知直线
的参数方程为![]()
.以坐标原点
为极点,
轴的非负半轴为极轴,取相同的长度单位建立极坐标系,曲线
的极坐标方程为
.
(1)求直线
的普通方程和曲线
的直角坐标方程;
(2)若曲线
上的点到直线l的最大距离为
,求实数
的值.
科目:高中数学 来源: 题型:
【题目】定义向量的外积:
叫做向量
与
的外积,它是一个向量,满足下列两个条件:
(1)
,
,且
,
和
构成右手系(即三个向量两两垂直,且三个向量的方向依次与拇指、食指、中指的指向一致);
(2)
的模
(
表示向量
、
的夹角);
如图,在正方体
,有以下四个结论:
![]()
①
与
方向相反;
②
;
③
与正方体表面积的数值相等;
④
与正方体体积的数值相等.
这四个结论中,正确的结论有( )个
A.4B.3C.2D.1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2017高考新课标Ⅲ,理19)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
![]()
(1)证明:平面ACD⊥平面ABC;
(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改革”引起广泛关注,为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人进行调查,就“是否取消英语听力”问题进行了问卷调查统计,结果如下表:
态度 调查人群 | 应该取消 | 应该保留 | 无所谓 |
在校学生 | 2100人 | 120人 |
|
社会人士 | 600人 |
|
|
(1)已知在全体样本中随机抽取
人,抽到持“应该保留”态度的人的概率为
,现用分层抽样的方法在所有参与调查的人中抽取
人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?
(2)在持“应该保留”态度的人中,用分层抽样的方法抽取
人,再平均分成两组进行深入交流,求第一组中在校学生人数
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族
中的成员仅以自驾或公交方式通勤.分析显示:当
中
(
)的成员自驾时,自驾群体的人均通勤时间为
(单位:分钟),而公交群体的人均通勤时间不受
影响,恒为
分钟,试根据上述分析结果回答下列问题:
(1)当
在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?
(2)求该地上班族
的人均通勤时间
的表达式;讨论
的单调性,并说明其实际意义.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两动圆
和
(
),把它们的公共点的轨迹记为曲线
,若曲线
与
轴的正半轴的交点为
,且曲线
上的相异两点
满足:
.
(1)求曲线
的轨迹方程;
(2)证明直线
恒经过一定点,并求此定点的坐标;
(3)求
面积
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com