精英家教网 > 高中数学 > 题目详情

(09年滨州一模理)(12分)

如图所示,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,平面PBC⊥底面ABCD,且PB=PC=.

(Ⅰ)求证:AB⊥CP;

(Ⅱ)求点到平面的距离;

(Ⅲ)设面与面的交线为,求二面角的大小.

解析:(Ⅰ)∵   底面ABCD是正方形,

∴AB⊥BC,

又平面PBC⊥底面ABCD  

平面PBC ∩  平面ABCD=BC

∴AB  ⊥平面PBC

又PC平面PBC

∴AB  ⊥CP  ………………3分

(Ⅱ)解法一:体积法.由题意,面

中点,则

.

再取中点,则   ………………5分

设点到平面的距离为,则由

.                   ………………7分

解法二:

中点,再取中点

过点,则

中,

∴点到平面的距离为。  ………………7分

解法三:向量法(略)

(Ⅲ)

就是二面角的平面角.

∴二面角的大小为45°.   ………………12分

方法二:向量法(略).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(09年滨州一模理)(14分)

已知曲线上一点作一斜率为的直线交曲线于另一点,点列的横坐标构成数列,其中

(I)求的关系式;

(II)令,求证:数列是等比数列;

(III)若(λ为非零整数,n∈N*),试确定λ的值,使得对任意n∈N*,都有cn+1>cn成立。

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年滨州一模理)(12分)

已知方向向量为的直线过点和椭圆的右焦点,且椭圆的离心率为

(I)求椭圆的方程;

(II)若已知点,点是椭圆上不重合的两点,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年滨州一模理)(12分)

设函数

(I)若直线l与函数的图象都相切,且与函数的图象相切于点

(1,0),求实数p的值;

(II)若在其定义域内为单调函数,求实数p的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年滨州一模理)(12分)

已知向量,其中>0,且,又的图像两相邻对称轴间距为.

(Ⅰ)求的值;

(Ⅱ) 求函数在[-]上的单调减区间.

查看答案和解析>>

同步练习册答案