精英家教网 > 高中数学 > 题目详情
已知cos(x-
π
4
)=
2
10
,x∈(
π
2
4
).
(1)求sinx的值;
(2)求sin(2x+
π
3
)的值.
(1)因为x∈(
π
2
4
),
所以x-
π
4
∈(
π
4
π
2
),
sin(x-
π
4
)=
1-cos2(x-
π
4
)
=
7
2
10

sinx=sin[(x-
π
4
)+
π
4
]
=sin(x-
π
4
)cos
π
4
+cos(x-
π
4
)sin
π
4

=
7
2
10
×
2
2
+
2
10
×
2
2
=
4
5

(2)因为x∈(
π
2
4
),
故cosx=-
1-sin2x
=-
1-(
4
5
)2
=-
3
5

sin2x=2sinxcosx=-
24
25

cos2x=2cos2x-1=-
7
25

所以sin(2x+
π
3
)=sin2xcos
π
3
+cos2xsin
π
3

=-
24+7
3
50
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知cos(x-
π
4
)=
2
10
,x∈(
π
2
4
).
(1)求sinx的值;
(2)求sin(2x+
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cos(x-
π
4
)=
2
10
,x∈(
π
2
4
).则sinx=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(x+
4
)+cos(x-
4
)

(Ⅰ)求f(x)的对称轴方程;
(Ⅱ)已知sin(α+β)=-
3
5
cos(β+
π
4
)=-
4
5
α,β∈(
π
2
4
)
,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知ω>0,函数f(x)=cos(ωx+
π
4
)在(0,
π
2
)单调递减,则ω的取值范围是
(0,
3
2
]
(0,
3
2
]

查看答案和解析>>

同步练习册答案