精英家教网 > 高中数学 > 题目详情
19.设关于x的函数f(x)=2cos2x-2acosx-(2a+1)的最小值为g(a).
(1)试用a写出g(a)的表达式;
(2)试求g(a)=$\frac{1}{2}$时a的值,并求此时f(x)的最大值.

分析 (1)利用二倍角公式对函数解析式化简,配方后,讨论$\frac{a}{2}$的范围确定g(a)的解析式,最后综合即可.
(2)利用每个范围段的解析式求得a的值,最后验证a即可.

解答 (本小题12分)
解:(1)f(x)=2cos2x-2acosx-(2a+1)=2(cosx-$\frac{a}{2}$)2-$\frac{{a}^{2}+4a+2}{2}$,且|cosx|≤1,
当$\frac{a}{2}$≤-1,即a≤-2时,g(a)=f(-1)=1,
当-1<$\frac{a}{2}$<1,即-2<a<2时,g(a)=f($\frac{a}{2}$)=-$\frac{{a}^{2}}{2}$-2a-1,
当$\frac{a}{2}$≥1,即a≥2时,g(a)=f(1)=1-4a,
∴g(a)=$\left\{\begin{array}{l}{\stackrel{1}{-\frac{{a}^{2}}{2}-2a-1}}&{\stackrel{a≤-2}{-2<a<2}}\\{1-4a}&{a≥2}\end{array}\right.$,
(2)由(1)知,g(a)=$\frac{1}{2}$ 时,若a≥2,
则1-4a=$\frac{1}{2}$,可得a=$\frac{1}{8}$与前提矛盾,舍去,
故-$\frac{{a}^{2}}{2}$-2a-1=$\frac{1}{2}$,可得a=-1,
此时,f(x)=2(cosx+$\frac{1}{2}$)2+$\frac{1}{2}$,
∴当cosx=1时,f(x)取得最大值5.

点评 本题主要考查了二次函数的性质,函数思想的运用,分段函数等知识,考查了学生综合素质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.在△ABC中,内角A、B、C所对的边分别为a、b、c,若$\frac{1}{a}$,$\frac{1}{b}$,$\frac{1}{c}$成等差数列,则cosB+sinB的取值范围为(1,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,PA⊥平面ABCD,四边形ABCD为矩形,PA=AB,点F是PB的中点,点E在边BC上移动.
(1)当点E为BC的中点时,证明EF∥平面PAC;
(2)证明:无论点E在边BC的何处,都有PE⊥AF.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知过点A(-2,m)和(m,10)的直线与直线2x-y-1=0平行,则m的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知sinθ=2cosθ,则$\frac{{sin(\frac{π}{2}+θ)-cos(π+θ)}}{{sin(\frac{π}{2}-θ)-sin(π-θ)}}$=(  )
A.2B.-2C.0D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.定义在R上的偶函数满足f($\frac{3}{2}$+x)=f($\frac{3}{2}$-x),且f(-1)=1,f(0)=-2,则f(1)+f(2)+f(3)+…+f(2016)的值为(  )
A.2B.1C.0D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\left\{\begin{array}{l}{2^x}-1,x≤1\\-{log_2}x+1,x>1\end{array}$,则f[f(2)]=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.观察下列等式:
12=1
32=2+3+4
52=3+4+5+6+7
72=4+5+6+7+8+9+10
92=5+6+7+8+9+10+11+12+13

以上等式右侧中,1出现1次,2出现1次,3出现2次,4出现3次,…,则2016出现的次数为1344.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={0,1,2,3},B={x|(x+1)(x-2)<0},则A∩B=(  )
A.{0,2}B.{1,0}C.{0,1,2,3}D.{-1,0,1,2,3}

查看答案和解析>>

同步练习册答案