精英家教网 > 高中数学 > 题目详情
直线AB、ADα,直线CB、CDβ,点E∈AB,点F∈BC,点G∈CD,点H∈DA,若直线EH∩直线FG=M,则点M在___________上.

答案:BD

解析:由已知知B、D∈α,B、D∈β,

∴α∩β=BD.而E、H分别在AB、DA上,

∴直线EHα.同理,FGβ.

又∵直线EH∩直线FG=M,

∴M∈EH,M∈FG.

∴M∈α,M∈β,M∈BD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图梯形ABCD,AD∥BC,∠A=90°,过点C作CE∥AB,AD=2BC,AB=BC,,现将梯形沿CE折成直二面角D-EC-AB.
(1)求直线BD与平面ABCE所成角的正切值;
(2)设线段AB的中点为P,在直线DE上是否存在一点M,使得PM∥面BCD?若存在,请指出点M的位置,并证明你的结论;若不存在,请说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•成都一模)设直三梭柱ABC-A1B1C1的底面为等腰直角三角形,AB=AC=2,动点E、F在侧棱CC1上,动点P、Q分别碰AB1,BB1上,若EF═1,CE=x,BQ=y,BP=z,其中x,y,z>0,则下列结论中错误的是.(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•盐城一模)如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=2,BC=BB1=1,D是棱A1C1的中点.
(1)设平面BB1D与棱AC交于点E,确定点E的位置并给出理由;
(2)求直线AB与平面BB1D所成角的大小;
(3)求二面角B-AD-B1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形ABCD中,E、F分别是AB、AD的中点,将此正方形沿EF折成直二面角后,异面直线AF与BE所成角的余弦值为
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正△ABC的边长为2a,CD是AB边上的高,E、F分别是AD和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B.
(1)试判断翻折后直线AB与平面DEF的位置关系,并说明理由; 
(2)求异面直线AB与DE所成角的大小.

查看答案和解析>>

同步练习册答案