如图,在四棱锥P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB的中点.
(1)求证:平面EAC⊥平面PBC;
(2)若二面角P-AC-E的余弦值为,求直线PA与平面EAC所成角的正弦值.
(1)见解析(2)
【解析】(1)∵PC⊥平面ABCD,AC?平面ABCD,∴AC⊥PC.∵AB=2,AD=CD=1,∴AC=BC=.∴AC2+BC2=AB2.∴AC⊥BC.
又BC∩PC=C,∴AC⊥平面PBC.
∵AC?平面EAC,∴平面EAC⊥平面PBC.
(2)如图,
以点C为原点,,,分别为x轴、y轴、z轴正方向,建立空间直角坐标系,则C(0,0,0),A(1,1,0),B(1,-1,0),设P(0,0,a)(a>0),
则E,=(1,1,0),=(0,0,a),=.取m=(1,-1,0),则m·=m·=0,m为面PAC的法向量.设n=(x,y,z)为面EAC的法向量,则n·=n·=0,即,取x=a,y=-a,z=-2,则n=(a,-a,-2),依题意,|cos〈m,n〉|===,则a=2.于是n=(2,-2,-2),=(1,1,-2).设直线PA与平面EAC所成角为θ,则sin θ=|cos〈,n〉|==,即直线PA与平面EAC所成角的正弦值为
科目:高中数学 来源:2014年高考数学(理)二轮复习专题提升训练训练14练习卷(解析版) 题型:解答题
已知点A(-3,0),B(3,0),动点P满足|PA|=2|PB|.
(1)若点P的轨迹为曲线C,求此曲线的方程;
(2)若点Q在直线l1:x+y+3=0上,直线l2经过点Q且与曲线C只有一个公共点M,求|QM|的最小值.?
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习专题提升训练训练11练习卷(解析版) 题型:选择题
如图,多面体ABCD?EFG的底面ABCD为正方形,FC=GD=2EA,其俯视图如下,则其正视图和侧视图正确的是( ).
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习专题提升训练优化重组卷5练习卷(解析版) 题型:填空题
设圆C的圆心与双曲线=1(a>0)的右焦点重合,且该圆与此双曲线的渐近线相切,若直线l:x-y=0被圆C截得的弦长等于2,则a的值为________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习专题提升训练优化重组卷5练习卷(解析版) 题型:选择题
过抛物线y2=2px焦点F作直线l交抛物线于A,B两点,O为坐标原点,则△ABO为( ).
A.锐角三角形 B.直角三角形
C.不确定 D.钝角三角形
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习专题提升训练优化重组卷4练习卷(解析版) 题型:填空题
如图,在正方体ABCD-A1B1C1D1中,点P在直线BC1上运动时,有下列三个命题:①三棱锥AD1PC的体积不变;②直线AP与平面ACD1所成角的大小不变;③二面角P-AD1-C的大小不变.其中真命题的序号是________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习专题提升训练优化重组卷4练习卷(解析版) 题型:选择题
一个正三棱柱的正视图是边长为的正方形,则它的外接球的表面积等于( ).
A.8π B. C.9π D.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习专题提升训练优化重组卷3练习卷(解析版) 题型:选择题
若{an}为等差数列,Sn是其前n项的和,且S11=π,则tan a6=( ).
A. B.- C.± D.-
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习专题提升训练x4-1练习卷(解析版) 题型:填空题
如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若,则的值为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com