精英家教网 > 高中数学 > 题目详情
若点O和点F分别为双曲线 的中心和左焦点,点P为双曲线右支上的任意一点,则的最小值为(  )
A.-6B.-2C.0D.10
D

试题分析:解:设P(x,y)(x≥2)由题意可得,F(-3,0),O(0,0),
 =(x,y),=(x+3,y),∴=x2+3x+y2=x2+3x+-5=+3x-5(x≥2),结合二次函数的性质可知,当x=2时,f(x)有最小值10,故选D
点评:本题以向量的数量积的坐标表示为载体,主要考查了双曲线的范围及二次函数的性质的综合应用
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

双曲线的离心率为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

平面内与两定点连线的斜率之积等于非零常数的点的轨迹,加上 两点,所成的曲线可以是圆,椭圆或双曲线.
(Ⅰ)求曲线的方程,并讨论的形状与值的关系;
(Ⅱ)当时,对应的曲线为;对给定的,对应的曲线为,若曲线的斜率为的切线与曲线相交于两点,且为坐标原点),求曲线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆的中心在原点,其上、下顶点分别为,点在直线上,点到椭圆的左焦点的距离为.

(Ⅰ)求椭圆的标准方程;
(Ⅱ)设是椭圆上异于的任意一点,点轴上的射影为的中点,直线交直线于点的中点,试探究:在椭圆上运动时,直线与圆:的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系中,曲线的参数方程为为参数)。
若以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(其中为常数)
(1)当时,曲线与曲线有两个交点.求的值;
(2)若曲线与曲线只有一个公共点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知圆C的圆心是直线与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程为        

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”.已知是一对相关曲线的焦点,是它们在第一象限的交点,当时,这一对相关曲线中双曲线的离心率是(  )
                                     

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

中心在原点,焦点在轴上的双曲线的离心率为,直线与双曲线交于两点,线段中点在第一象限,并且在抛物线上,且到抛物线焦点的距离为,则直线的斜率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在椭圆上找一点,使这一点到直线的距离的最小值

查看答案和解析>>

同步练习册答案