精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x+
1
x

(Ⅰ)判断函数的奇偶性,并加以证明;
(Ⅱ)用定义证明f(x)在(0,1)上是减函数;
(Ⅲ)函数f(x)在[-1,0)上是否有最大值和最小值?如果有最大值或最小值,请求出最值.
考点:函数单调性的判断与证明,函数单调性的性质
专题:函数的性质及应用
分析:(I)用函数奇偶性定义证明,要注意定义域.(II)先任取两个变量,且界定大小,再作差变形看符号,(III)由函数图象判断即可.
解答: 解:(Ⅰ)证明:(I)函数为奇函数f(-x)=-x-
1
x
=-f(x),
(II)设x1,x2∈(0,1)且x1<x2
f(x2)-f(x1)=x2+
1
x2
-x1-
1
x1
=
(x2-x1)(x1x2-1)
x1x2

∵0<x1<x2<1,∴x1x2<1,x1x2-1<0,
∵x2>x1∴x2-x1>0.
∴f(x2)-f(x1)<0,f(x2)<f(x1),
因此函数f(x)在(0,1)上是减函数,
(III)由(Ⅰ)(Ⅱ)得:
f(x)在[-1,0)上是减函数,
∴f(x)max=f(-1)=-2,无最小值.
点评:本题主要考查函数奇偶性和单调性定义,要注意奇偶性要先判断,单调性变形要到位.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

记函数f(x)=lg(x2-x-2)的定义域为集合A,函数g(x)=
9-x2
的定义域为集合B.
(1)求A∩B和A∪B;
(2)若C={x|4x+p<0},C⊆A,求实数P的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数
1
2
(x-t)2+x-t-1≤x-1的定义域为R,对任意实数m,n都有f(m+n)=f(m)•f(n),且当x>0时,0<f(x)<1.
(1)证明:f(0)=1,且x<0时,f(x)>1;
(2)证明:f(x)在R上单调递减;
(3)设A={(x,y)|f(x2)•f(y)=f(1)},B={(x,y)|f(ax-y+2)=1,a∈R},A∩B=Φ,试确定a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)不等式(m2-2m-2)x2-mx+2x<f(x)的解集为R,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在长方体ABCD-A1B1C1D1中,AB=
2
,BC=
3
,AA1=
6
,则异面直线AB1与BC1所成角的大小为(  )
A、60°B、45°
C、30°D、15°

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)对任意a>0且a≠1,都有f(ax)=af(x),则称函数为“穿透”函数,则下列函数中,不是“穿透”函数的是(  )
A、f(x)=-x
B、f(x)=x+1
C、f(x)=|x|
D、f(x)=x-|x|

查看答案和解析>>

科目:高中数学 来源: 题型:

平面α的斜线l与它在这个平面上射影l′的方向向量分别为
a
=(1,0,1),
b
=(0,1,1),则斜线l与平面α所成的角为(  )
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中数学 来源: 题型:

计算sin
11π
4
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

直线x+y+1=0被圆x2+y2-6x-2y-15=0截得的弦长等于
 

查看答案和解析>>

同步练习册答案