| 1 | ||
an-
|
| 1 | ||
an-
|
| 1 |
| bn |
| 1 |
| 2 |
| 4 |
| 3 |
| 4 |
| 3 |
| 1 |
| bn |
| 1 |
| 2 |
| 1 | ||
an-
|
| 1 |
| bn |
| 1 |
| 2 |
| 1 |
| bn+1 |
| 1 |
| 2 |
| 1 |
| bn |
| 1 |
| 2 |
| 1 |
| bn+1 |
| 1 |
| 2 |
| 1 |
| bn |
| 1 |
| 2 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 1 | ||
a1-
|
| 4 |
| 3 |
| 2 |
| 3 |
| 4 |
| 3 |
| 2 |
| 3 |
| 2n |
| 3 |
| 2n |
| 3 |
| 4 |
| 3 |
| 2 |
| 3 |
| 4 |
| 3 |
| 22 |
| 3 |
| 4 |
| 3 |
| 8 |
| 3 |
| 23 |
| 3 |
| 4 |
| 3 |
| 24 |
| 3 |
| 4 |
| 3 |
| 20 |
| 3 |
| 2n |
| 3 |
| 4 |
| 3 |
| 1 |
| bn |
| 1 |
| 2 |
| 3 |
| 2n+4 |
| 1 |
| 2 |
| 3 |
| 2n+4 |
| 1 |
| 2 |
| 2n |
| 3 |
| 4 |
| 3 |
| 2n-1+2 |
| 3 |
| 5 |
| 3 |
| 2n-1 |
| 3 |
| 5 |
| 3 |
| 1 |
| 3 |
| 5 |
| 3 |
| 2 |
| 3 |
| 5 |
| 3 |
| 2n-1 |
| 3 |
| 5 |
| 3 |
| ||
| 1-2 |
| 5 |
| 3 |
| 2n-1 |
| 3 |
科目:高中数学 来源: 题型:
(理)数列{an}满足
,
,且a1a2+a2a3+…+anan+1=na1an+1对于任何正整数n都成立,则
的值为 ( )
A.5050 B.5048 C.5044 D.5032
查看答案和解析>>
科目:高中数学 来源: 题型:
(1)证明:an>2;
(2)证明:a1+a2+…+an<2(n+a-2);
(3)若xn=
,求数列{xn}的通项公式
(文)已知数列{an}和{bn}满足:a1=
,且an+bn=1,bn+1=
(n∈N*).
(1)求数列{an}与{bn}的通项公式;
(2)设Sn=a1+a2+a2a3+…+anan+1.若对任意的n∈N*,不等式kSn>bn恒成立,求正整数k的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com