精英家教网 > 高中数学 > 题目详情
14.已知f(x)是R上的奇函数,且当x>0时f(x)=x(1-x),则当x<0时f(x)的解析式是f(x)=(  )
A.-x(x-1)B.-x(x+1)C.x(x-1)D.x(x+1)

分析 利用奇函数的性质即可得出.

解答 解:当x<0时,-x>0,
∵当x>0时f(x)=x(1-x),
∴f(-x)=-x(1+x),
∵f(x)是R上的奇函数,
∴f(x)=-f(-x)=x(1+x),
故选:D.

点评 本题考查了奇函数的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.将直线l:x-y+3=0绕定点(3,0)沿逆时针方向旋转15°得直线l2,则直线l2的方程为$\sqrt{3}$x-y-3$\sqrt{3}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设U={x∈Z|0<x≤10},A={1,2,4,5,9},B={4,6,7,8,10},C={3,5,7},
求A∩B,(CUA)∩(CUB),(A∩B)∩C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列叙述中,正确的个数是(  )
①命题p:“?x∈R,x2-2≥0”的否定形式为¬p:“?x∈R,x2-2<0”;
②O是△ABC所在平面上一点,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\overrightarrow{OB}$•$\overrightarrow{OC}$=$\overrightarrow{OC}$•$\overrightarrow{OA}$,则O是△ABC的垂心;
③“M>N”是“($\frac{2}{3}$)M>($\frac{2}{3}$)N”的充分不必要条件;
④命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x-4≠0”.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)是奇函数,且定义域为(-∞,0)∪(0,+∞).若x<0时,f(x)=lg$\frac{1-x}{2}$.
(1)求f(x)的解析式;
(2)解关于x的不等式f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知x=27,y=64.化简并计算$\frac{5{x}^{-\frac{2}{3}}{y}^{\frac{1}{2}}}{(-\frac{1}{4}{x}^{-1}{y}^{\frac{1}{2}})(-\frac{5}{6}{x}^{\frac{1}{3}}{y}^{-\frac{1}{6}})}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)对于函数f(x),g(x),已知f(6)=5,g(6)=4,f′(6)=3,g′(6)=1.如果h(x)=f(x)•g(x)-1,求h′(6)的值;
(2)直线y=$\frac{1}{2}$x+b能作为函数f(x)=sinx图象的切线吗?若能,求出切点坐标;若不能,简述理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在长方体ABCD-A′B′C′D′中,P、R分别为BC、CC′上的动点,当点P,R满足什么条件时,PR∥平面AB′D′?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在复平面内复数z=$\frac{ai+1}{1-i}$(a>0),已知|z|=1则$\overline{z}$=(  )
A.iB.-iC.-1D.1

查看答案和解析>>

同步练习册答案