精英家教网 > 高中数学 > 题目详情
(本小题满分13分)某企业准备招聘一批大学生到本单位就业,但在签约前要对他们的某项专业技能进行测试。在待测试的某一个小组中有男、女生共10人(其中女生人数多于男生人数),如果从中随机选2人参加测试,其中恰为一男一女的概率为 (I)求该小组中女生的人数;  (II)假设此项专业技能测试对该小组的学生而言,每个女生通过的概率均为,每个男生通过的概率均为,现对该小组中男生甲、男生乙和女生丙3个人进行测试,记这3人中通过测试的人数为随机变量,求的分布列和数学期望。
(Ⅰ)6(Ⅱ)  
(I)设该小组中有n个女生,根据题意,得
解得n=6,n=4(舍去)该小组中有6个女生。  5分
(II)由题意,的取值为0,1,2,3。  1分
  

      4分
的分布列为:

0
1
2
3
P




      …………1分
 3分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某项竞赛分别为初赛、复赛、决赛三个阶段进行,每个阶段选手要回答一个问题.规定正确回答问题者进入下一阶段竞赛,否则即遭淘汰.已知某选手通过初赛、复赛、决赛的概率分别是,且各阶段通过与否相互独立.
(I)求该选手在复赛阶段被淘汰的概率;
(II)设该选手在竞赛中回答问题的个数为,求的分布列、数学期望和方差.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某中学组建了A、B、C、D、E五个不同的社团组织,为培养学生的兴趣爱好,要求每个学生必须参加,且只能参加一个社团.假定某班级的甲、乙、丙三名学生对这五个社团的选择是等可能的.
(I)求甲、乙、丙三名学生参加五个社团的所有选法种数;
(Ⅱ)求甲、乙、丙三人中至少有两人参加同一社团的概率;
(Ⅲ)设随机变量为甲、乙、丙这三个学生参加A社团的人数,求的分布列与
数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(2008?石景山区一模)已知随机变量ξ的分布列为且设η=2ξ+1,则η的期望值是(  )
A.1B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球. 规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得分 . 现从盒内任取3个球.
(Ⅰ)求取出的3个球颜色互不相同的概率;
(Ⅱ)求取出的3个球得分之和恰为1分的概率;
(Ⅲ)设为取出的3个球中白色球的个数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某商场为刺激消费,拟按以下方案进行促销:顾客每消费500元便得到抽奖券一张,每张抽奖券的中奖概率为,若中奖,商场返回顾客现金100元.某顾客现购买价格为2300的台式电脑一台,得到奖券4张.
(Ⅰ)设该顾客抽奖后中奖的抽奖券张数为,求的分布列;
(Ⅱ)设该顾客购买台式电脑的实际支出为(元),用表示,并求的数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

2009年一项关于16艘轮船的研究中,船的吨位区间位于192吨到3246吨,船员的人数从5人到32人,船员的人数关于船的吨位的回归分析得到如下结果:船员人数=9.1+0.006×吨位.
(1)假定两艘轮船吨位相差1000吨,船员平均人数相差多少?
(2)对于最小的船估计的船员数为多少?对于最大的船估计的船员数是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某社区举办北京奥运知识宣传活动,现场的“抽卡有奖游戏”特别引人注目,游戏规则是:盒子中装有8张形状大小相同的精美卡片,卡片上分别印有“奥运福娃”或“奥运会徽”,要求4人中一组参加游戏,参加游戏的4人从盒子中轮流抽取卡片,一次抽2张,抽取后不放回,直到4人中一人一次抽到2张“奥运福娃” 卡才能得到奖并终止游戏。
(1)游戏开始之前,一位高中生问:盒子中有几张“奥运会徽” 卡?主持人说:若从盒中任抽2张卡片不都是“奥运会徽” 卡的概率为,请你回答有几张“奥运会徽” 卡呢?
(2)现有甲、乙、丙、丁4人参加游戏,约定甲、乙、丙、丁依次抽取。用表示4人中的某人获奖终止游戏时总共抽取卡片的次数,求的数学期望。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某篮球运动员罚球命中率为0.8,命中得1分,没有命中得0分,则他罚球1次的得分X的方差为(   )
A.0.18B.0.20C.0.14D.0.16

查看答案和解析>>

同步练习册答案