精英家教网 > 高中数学 > 题目详情

如图,正四面体ABCD的顶点A,B,C分别在两两垂直的三条射线Ox,Oy,Oz上,则在下列命题中,错误的为


  1. A.
    O-ABC是正三棱锥
  2. B.
    直线OB∥平面ACD
  3. C.
    直线AD与OB所成的角是45°
  4. D.
    二面角D-OB-A为45°
B
分析:结合图形,逐一分析答案,运用排除、举反例直接计算等手段,找出正确答案.
解答:解:①如图ABCD为正四面体,
∴△ABC为等边三角形,
又∵OA、OB、OC两两垂直,
∴OA⊥面OBC,∴OA⊥BC,
过O作底面ABC的垂线,垂足为N,
连接AN交BC于M,
由三垂线定理可知BC⊥AM,
∴M为BC中点,
同理可证,连接CN交AB于P,则P为AB中点,
∴N为底面△ABC中心,
∴O-ABC是正三棱锥,故A正确.
②将正四面体ABCD放入正方体中,如图所示,显然OB与平面ACD不平行.
则答案B不正确,
故本题答案选B.
点评:结合图形分析答案,增强直观性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

9、如图,正四面体ABCD的顶点A,B,C分别在两两垂直的三条射线Ox,Oy,Oz上,则在下列命题中,错误的为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正四面体S-ABC中,D为SC的中点,则BD与SA所成角的余弦值是(  )
A、
3
3
B、
2
3
C、
3
6
D、
2
6

查看答案和解析>>

科目:高中数学 来源: 题型:

14、如图,正四面体ABCD的顶点A、B、C分别在两两垂直的三条射线Ox、Oy、Oz上,给出下列四个命题:
①多面体O-ABC是正三棱锥;
②直线OB∥平面ACD;
③直线AD与OB所成的角为45°;
④二面角D-OB-A为45°.
其中真命题有
①③④
(写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:正四面体S-ABC中,如果E,F分别是SC,AB的中点,那么异面直线EF与SA所成的角等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正四面体S-ABC的边长为a,D是SA的中点,E是BC的中点,则SDE绕SE旋转一周所得旋转体的体积为
3
36
πa3
3
36
πa3

查看答案和解析>>

同步练习册答案