精英家教网 > 高中数学 > 题目详情
5.比较下列各组数的大小:
$(\frac{2}{5})^{-\frac{1}{2}}$<$(0.4)^{-\frac{3}{2}}$;                   
$(\frac{\sqrt{3}}{3})^{0.76}$<$(\sqrt{3})^{-0.75}$.

分析 根据指数函数的图象与性质,对题目中的函数值大小进行判断即可.

解答 解:①∵${(0.4)}^{-\frac{3}{2}}$=${(\frac{2}{5})}^{-\frac{3}{2}}$,
函数y=${(\frac{2}{5})}^{x}$在定义域R上是单调减函数,且-$\frac{1}{2}$>-$\frac{3}{2}$,
∴${(\frac{2}{5})}^{-\frac{1}{2}}$<${(\frac{2}{5})}^{-\frac{3}{2}}$,
即${(\frac{2}{5})}^{-\frac{1}{2}}$<${(0.4)}^{-\frac{3}{2}}$;
②∵${(\frac{\sqrt{3}}{3})}^{0.76}$=${(\sqrt{3})}^{-0.76}$,
函数y=${(\sqrt{3})}^{x}$在定义域R上是单调增函数,且-0.76<-0.75,
∴${(\sqrt{3})}^{-0.76}$<${(\sqrt{3})}^{-0.75}$,
即${(\frac{\sqrt{3}}{3})}^{0.76}$<${(\sqrt{3})}^{-0.75}$.
故答案为:①<,②<.

点评 本题考查了利用指数函数的图象与性质比较函数值大小的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.{an}为等差数列,其前n项和为Sn,有S2=10,S5=55,则过点P(n,$\frac{{S}_{n}}{n}$),Q(n+2,$\frac{{S}_{n+2}}{n+2}$)(n∈N*)的直线的斜率为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知一次函数y=kx+b是奇函数,则函数g(x)=ax3+cx+b的奇偶性是奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)终边在直线y=$\sqrt{3}$x上,且在[-2π,2π)内的角α的集合为{-$\frac{2π}{3}$,-$\frac{5π}{3}$,$\frac{π}{3}$,$\frac{4π}{3}$}.
(2)如果α是第三象限的角.试确定-α,2α的终边所在位置.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x)是定义在R上的函数,且对任意x、y∈R,f(x+y)=f(x)+f(y),且当x>0时,f(x)>0.
(1)求f(0)的值;
(2)证明函数f(x)是奇函数;
(3)证明函数f(x)是R上的增函数;
(4)解不等式f(2a2)+f(5a-2)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)=$\left\{\begin{array}{l}{2x-1(x<\frac{1}{2})}\\{f(x-1)+1(x≥\frac{1}{2})}\end{array}\right.$,则f($\frac{1}{4}$)+f($\frac{7}{6}$)=(  )
A.-$\frac{1}{6}$B.$\frac{1}{6}$C.$\frac{5}{6}$D.-$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若实数x,y满足x2+y2-2x+6y+9=0,则|$\sqrt{3}$x+y-$\sqrt{3}$|的最大值、最小值分别为 (  )
A.5、1B.5、0C.7、1D.7、0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={a1,a2,a3,…am},D={a1,a2,a3,…an},且n>m,给出下列命题
①满足A⊆C⊆D的集合C的个数为2n-m
②满足A?C⊆D的集合C的个数为2n-m-1
③满足A⊆C?D的集合C的个数为2n-m-1;
④满足A?C?D的集合C的个数为2n-m-2
其中正确的是(  )
A.①③B.②③C.①④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知向量$\overrightarrow{a}$=($\sqrt{3}$,-1),$\overrightarrow{b}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),若存在实数x,y,使向量$\overrightarrow{c}$=$\overrightarrow{a}$+(4x2-3)$\overrightarrow{b}$,$\overrightarrow{d}$=-y$\overrightarrow{a}$+$\frac{1}{x-1}$$\overrightarrow{b}$,且$\overrightarrow{c}$⊥$\overrightarrow{d}$.
(1)试求函数y=f(x)的关系式;
(2)若x>1,则是否存在实数m,使得m<f(x)恒成立?如果存在,求出m的取值范围;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案