精英家教网 > 高中数学 > 题目详情
设F1、F2为双曲线
x2
sin2θ
-
y2
b2
=1(0<θ≤
π
2
,b>0)的两个焦点,过F1的直线交双曲线的同支于A、B两点,如果|AB|=m,则△AF2B的周长的最大值是(  )
A、4-mB、4
C、4+mD、4+2m
分析:根据双曲线的性质可知|AF2|-|AF1|=2sinθ,|BF2|-|BF1|=2sinθ,根据|BF1|+|AF1|=m,代入AF2B的周长,最后根据sinθ的范围求得周长的最大值.
解答:解:根据双曲线的性质可知|AF2|-|AF1|=2sinθ,|BF2|-|BF1|=2sinθ
∴|AF2|=2sinθ+|AF1|,|BF2|=2sinθ+|BF1|
∵|BF1|+|AF1|=m,
∴△AF2B的周长=|AF2|+|BF2|+2m=4sinθ+2m
∴最大值是2m+4
故选D.
点评:本题主要考查了双曲线的简单性质.充分利用了双曲线的定义.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设F1和F2为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的两个焦点,若F1,F2,P(0,2b)是正三角形的三个顶点,则双曲线的离心率为(  )
A、
3
2
B、2
C、
5
2
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1和F2为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的两个焦点,若F1、F2、P(0,2b)是正三角形的三个顶点,则双曲线的离心率为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

以正方形ABCD的相对顶点A、C为焦点的椭圆,恰好过正方形四边的中点,则该椭圆的离心率为
10
-
2
2
10
-
2
2
;设F1和F2为双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的两个焦点,若F1,F2,P(0,2b)是正三角形的三个顶点,则双曲线的离心率为
2
2
;经过抛物线y=
1
4
x2
的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,若y1+y2=5,则线段AB的长等于
7
7

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2为双曲线的左、右焦点,P为双曲线右支上任一点,若
PF12PF2
的最小值恰是实轴长的4倍,则该双曲线离心率的取值范围是
(1,3]
(1,3]

查看答案和解析>>

同步练习册答案