精英家教网 > 高中数学 > 题目详情

如图,直三棱柱ABCA1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D是A1B1的中点,F是BB1上的动点,AB1,DF交于点E.要使AB1⊥平面C1DF,则线段B1F的长为(   )

(A)    (B)1

(C)    (D)2


A解析:设B1F=x,因为AB1⊥平面C1DF,DF⊂平面C1DF,所以AB1⊥DF.由已知可以得A1B1=,矩形ABB1A1中,tan ∠FDB1=,tan ∠A1AB==,又∠FDB=∠A1AB,所以=,故B1F=×=.故选A.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:


如图是一个物体的三视图,则此三视图所描述物体的直观图是(   )

查看答案和解析>>

科目:高中数学 来源: 题型:


A是△BCD所在平面外的一点,E,F分别是BC,AD的中点.

(1)求证:直线EF与BD是异面直线;

(2)若AC⊥BD,AC=BD,求EF与BD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:


如图,直角梯形ACDE与等腰直角△ABC所在平面互相垂直,F为BC的中点,∠BAC=∠ACD=90°,AE∥CD,DC=AC=2AE=2.

(1)求证:AF∥平面BDE;

(2)求四面体BCDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:


如图,O为正方体ABCDA1B1C1D1的底面ABCD的中心,则下列直线中与B1O垂直的是(  )

(A)A1D (B)AA1

(C)A1D1  (D)A1C1

查看答案和解析>>

科目:高中数学 来源: 题型:


如图,三棱柱ABCA1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.

(1)证明:B1C⊥AB;

(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABCA1B1C1的高.

查看答案和解析>>

科目:高中数学 来源: 题型:


如图所示,PD垂直于正方形ABCD所在平面,AB=2,E为PB的中点,cos<,>=,若以DA,DC,DP所在直线分别为x,y,z轴建立空间直角坐标系,则点E的坐标为(   )

(A)(1,1,1)  (B)(1,1,)

(C)(1,1,)  (D)(1,1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:


如图所示,在正方体ABCDA1B1C1D1中,O是底面正方形ABCD的中心,M是D1D的中点,N是A1B1的中点,则直线NO、AM的位置关系是(  )

(A)平行

(B)相交

(C)异面垂直

(D)异面不垂直

查看答案和解析>>

科目:高中数学 来源: 题型:


用反证法证明命题“三角形的三个内角至少有一个不大于60°”时,应假设(  )

A.三个内角都不大于60° 

B.三个内角都大于60°

C.三个内角至多有一个大于60° 

D.三个内角至多有两个大于60°

查看答案和解析>>

同步练习册答案