精英家教网 > 高中数学 > 题目详情

【题目】为了改善空气质量,某市规定,从201811日起,对二氧化碳排放量超过的轻型汽车进行惩罚性征税.检测单位对甲乙两品牌轻型汽车各抽取5辆进行二氧化碳排放量检测,记录如下:(单位:

80

110

120

140

150

100

120

100

160

经测算得乙品牌轻型汽车二氧化碳排放量的平均值为.

1)求表中的值,并比较甲乙两品牌轻型汽车二氧化碳排放量的稳定性;

2)从被检测的5辆甲品牌汽车中随机抽取2辆,求至少有1辆二氧化碳排放量超过的概率.(注:方差,其中的平均数).

【答案】1,比较见解析;(2.

【解析】

1)根据可直接计算求得,再利用方差的计算公式分别计算两者的方差,比较大小后可得乙品牌轻型汽车的二氧化碳排放量较稳定.

2)利用列举法可得基本事件的总数和随机事件中含有的基本事件的个数,利用古典概型的概率计算公式可得所求的概率.

1)由,解得

所以

.

.

因为,所以乙品牌轻型汽车二氧化碳排放量较稳定.

2)从被检测的5辆甲品牌汽车中任取2辆,所有的结果为

10.

其中至少有1辆二氧化碳排放量超过的为:

7.

所以从被检测的5辆甲品牌汽车中任取2辆,至少有1辆氧化碳排放量超过的概率是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中国古代数学名草《周髀算经》曾记载有勾股各自乘,并而开方除之,用符号表示为,我们把abc叫做勾股数.下列给出几组勾股数:345512137242594041,以此类推,可猜测第5组股数的三个数依次是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知曲线和曲线,以极点为坐标原点,极轴为轴非负半轴建立平面直角坐标系.

(1)求曲线和曲线的直角坐标方程;

(2)若点是曲线上一动点,过点作线段的垂线交曲线于点,求线段长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某茶楼有四类茶饮,假设为顾客准备泡茶工具所需的时间互相独立,且都是整数分钟,经统计以往为100位顾客准备泡茶工具所需的时间,结果如下:

类别

铁观音

龙井

金骏眉

大红袍

顾客数(人)

20

30

40

10

时间(分钟/人)

2

3

4

6

注:服务员在准备泡茶工具时的间隔时间忽略不计,并将频率视为概率.

1)求服务员恰好在第6分种开始准备第三位顾客的泡茶工具的概率;

2)用表示至第4分钟末已准备好了工具的顾客人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四面体中,,平面平面,且.

(1)证明:平面

(2)设为棱的中点,当四面体的体积取得最大值时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙.从外观上看,是严丝合缝的十字立方体,其上下、左右、前后完全对称;六根等长的正四棱柱分成三组,经90°榫卯起来.如图所示,正四棱柱的高为8,底面正方形的边长为1,将这个鲁班锁放进一个球形容器内,则该球形容器半径的最小值为(容器壁的厚度忽略不计)(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx=x-a>0),gx=2lnx+bx且直线y=2x2与曲线y=gx)相切.

1)若对[1+)内的一切实数x,小等式fx≥gx)恒成立,求实数a的取值范围;

2)当a=l时,求最大的正整数k,使得对[e3]e=271828是自然对数的底数)内的任意k个实数x1x2,,xk都有成立;

3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两点,若直线上存在四个点,使得是直角三角形,则实数的取值范围是(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的内角ABC所对的边分别为abc,已知asinB=bsin2A.

1)求角A

2)若a=5,△ABC的面积为,求△ABC的周长.

查看答案和解析>>

同步练习册答案