【题目】已知抛物线的焦点上一点到焦点的距离为.
(1)求的方程;
(2)过作直线,交于两点,若直线中点的纵坐标为,求直线的方程.
【答案】(1)(2)
【解析】
试题分析:(1)利用抛物线的定义,求出p,即可求C的方程;(2)利用点差法求出直线l的斜率,即可求直线l的方程
试题解析:(1)法一:抛物线: 的焦点的坐标为,
由已知……………2分
解得或
∵,∴
∴的方程为.……4分
法二:抛物线: 的准线方程为
由抛物线的定义可知
解得…………………3分
∴的方程为.……………4分
(2)法一:由(1)得抛物线C的方程为,焦点
设两点的坐标分别为,
则…………6分
两式相减。整理得
∵线段中点的纵坐标为
∴直线的斜率……………………10分
直线的方程为即……………12分
法二:由(1)得抛物线的方程为,焦点
设直线的方程为
由
消去,得
设两点的坐标分别为,
∵线段中点的纵坐标为
∴
解得……………………………………10分
直线的方程为即……………………………………12分
科目:高中数学 来源: 题型:
【题目】如下图,已知四棱锥中,底面为菱形,平面,,,分别是,的中点.
(I)证明:平面;
(II)取,在线段上是否存在点,使得与平面所成最大角的正切值为,若存在,请求出点的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,点也为抛物线的焦点,过点的直线交抛物线于两点.
(Ⅰ)若点满足,求直线的方程;
(Ⅱ)为直线上任意一点,过点作的垂线交椭圆于两点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C的标准方程是
(Ⅰ)求它的焦点坐标和准线方程;
(Ⅱ)直线过已知抛物线C的焦点且倾斜角为45°,且与抛物线的交点为A、B,求线段AB的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为增强市民的节能环保意识,郑州市面向全市征召义务宣传志愿者,从符合条件的500名志愿者中随机抽取100名,其年龄频率分布直方图如图所示,其中年龄分组区是:.
(Ⅰ)求图中的值,并根据频率分布直方图估计这500名志愿者中年龄在岁的人数;
(Ⅱ)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取10名参加中心广场的宣传活动,再从这10名志愿者中选取3名担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司生产一批产品需要原材料500吨,每吨原材料可创造利润12万元,该公司通过设备升级,生产这批产品所需原材料减少了吨,且每吨原材料创造的利润提高;若将少用的吨原材料全部用于生产公司新开发的产品,每吨原材料创造的利润为万元.
(1)若设备升级后生产这批产品的利润不低于原来生产该批产品的利润,求的取值范围;
(2)若生产这批产品的利润始终不高于设备升级后生产这批产品的利润,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图.
(I)求直方图中的值;
(II)求月平均用电量的众数和中位数;
(III)在月平均用电量为,,,的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知过点的直线的参数方程是(为参数).以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程式为.
(Ⅰ)求直线的普通方程和曲线的直角坐标方程;
(Ⅱ)若直线与曲线交于两点,且,求实数的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com