【题目】设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.
(1)求同一工作日至少3人需使用设备的概率;
(2)X表示同一工作日需使用设备的人数,求X的数学期望.
【答案】
(1)解:由题意可得“同一工作日至少3人需使用设备”的概率为
0.6×0.5×0.5×0.4+(1﹣0.6)×0.5×0.5×0.4+0.6×(1﹣0.5)×0.5×0.4+0.6×0.5×(1﹣0.5)×0.4+0.6×0.5×0.5×(1﹣0.4)=0.31.
(2)解:X的可能取值为0,1,2,3,4
P(X=0)=(1﹣0.6)×0.52×(1﹣0.4)=0.06
P(X=1)=0.6×0.52×(1﹣0.4)+(1﹣0.6)×0.52×0.4+(1﹣0.6)×2×0.52×(1﹣0.4)=0.25
P(X=4)=P(A2BC)=0.52×0.6×0.4=0.06,
P(X=3)=P(D)﹣P(X=4)=0.25,
P(X=2)=1﹣P(X=0)﹣P(X=1)﹣P(X=3)﹣P(X=4)=1﹣0.06﹣0.25﹣0.25﹣0.06=0.38.
故数学期望EX=0×0.06+1×0.25+2×0.38+3×0.25+4×0.06=2
【解析】记Ai表示事件:同一工作日乙丙需要使用设备,i=0,1,2,B表示事件:甲需要设备,C表示事件,丁需要设备,D表示事件:同一工作日至少3人需使用设备(1)把4个人都需使用设备的概率、4个人中有3个人使用设备的概率相加,即得所求.(2)X的可能取值为0,1,2,3,4,分别求出PXi , 再利用数学期望公式计算即可.
科目:高中数学 来源: 题型:
【题目】一个建筑物上部为四棱锥,下部为长方体,且四棱锥的底面与长方体的上底面尺寸一样,已知长方体的长、宽、高分别为20 m、5 m、10 m,四棱锥的高为8 m,若按1︰500的比例画出它的直观图,那么直观图中,长方体的长、宽、高和棱锥的高应分别为 ( )
A. 4 cm,1 cm, 2 cm,1.6 cm
B. 4 cm,0.5 cm,2 cm,0.8 cm
C. 4 cm,0.5 cm,2 cm,1.6 cm
D. 2 cm,0.5 cm,1 cm,0.8 cm
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x+1)定义域是[﹣2,3],则y=f(x﹣1)的定义域是( )
A.[0,5]
B.[﹣1,4]
C.[﹣3,2]
D.[﹣2,3]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题中:①“等边三角形的三个内角均为60”的逆命题;
②“若k>0,则方程x2+2x-k=0有实根”的逆否命题;
③“全等三角形的面积相等”的否命题;
④“若ab≠0,则a≠0”的否命题。
其中真命题的个数是( )
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则( )
A.f(-25)<f(11)<f(80)
B.f(80)<f(11)<f(-25)
C.f(11)<f(80)<f(-25)
D.f(-25)<f(80)<f(11)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解某种轮胎的性能,随机抽取了8个进行测试,其最远里程数分别(单位:1000km)为:
96, 112, 97, 108, 99, 104, 86, 98,则它们的中位数是( )
A. 100 B. 99 C. 98.5 D. 98
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】m,n是空间两条不同直线,α,β是空间两个不同平面,下面有四种说法:
①m⊥α,n∥β,α∥βm⊥n;
②m⊥n,α∥β,m⊥αn∥β;
③m⊥n,α∥β,m∥αn⊥β;
④m⊥α,m∥n,α∥βn⊥β.
其中正确说法的个数为 ( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com