精英家教网 > 高中数学 > 题目详情
已知(x-3) -
1
3
<(1+x) -
1
3
,求x的取值范围.
考点:幂函数的单调性、奇偶性及其应用
专题:不等式的解法及应用
分析:直接利用幂函数的单调性,写出等价不等式求解即可.
解答: 解:因为y=x-
1
3
,在(-∞,0),(0,+∞)上是减函数,
所以(x-3) -
1
3
<(1+x) -
1
3
,等价于:
x-3<0
1+x>0
或0<1+x<x-3,或1+x<x-3<0,
解得-1<x<3.
x的取值范围:(-1,3).
点评:本题考查幂函数的单调性的应用,不等式的解法,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=alnx-x+
a+3
x
在定义域内无极值,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C的对边分别为a、b、c,若cosC是方程2x2+x-1=0的一个根,求:
(Ⅰ)角C的度数;
(Ⅱ)若a=2,b=4,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

要得到函数f(x)=sin(2x+
π
3
)的导函数f′(x)的图象,只需将f(x)的图象(  )
A、向左平移
π
2
个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变)
B、向左平移
π
2
个单位,再把各点的纵坐标缩短到原来的
1
2
(横坐标不变)
C、向左平移
π
4
个单位,再把各点的纵坐标缩短到原来的
1
2
(横坐标不变)
D、向左平移
π
4
个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(xω+φ)(A,ω,φ是常数,A>0,ω>0)的最小正周期为π,设集合M={直线l|l为曲线y=f(x)在点(x0,f(x0))处的切线,x0∈[0,π)].若集合M中有且只有两条直线互相垂直,则ω=
 
;A=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)在△ABC中,∠A、∠B、∠C所对的边分别是a、b、c,设平面向量
e1
=(2cosC,
c
2
-b),
e2
=(
1
2
a,1),且
e1
e2

(I)求cos2A的值;      
(Ⅱ)若a=2,则△ABC的周长L的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等差数列且a1+a7+a13=4π,则tan(a2+a12)的值为(  )
A、-
3
B、±
3
C、-
3
3
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

正三角形ABC中,AB=3,D是边BC上的点,且满足
BC
=2
BD
,则
AB
AD
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

方程log2x+log2(x-1)=1的解集为M,方程22x+1-9•2x+4=0的解集为N,那么M与N的关系是(  )
A、M=NB、M?N
C、N?MD、M∩N=φ

查看答案和解析>>

同步练习册答案