(本小题共13分)已知圆
过两点
(1,-1),
(-1,1),且圆心
在
上.
(1)求圆
的方程;
(2)设
是直线
上的动点,
、
是圆
的两条切线,
、
为切点,求四边形
面积的最小值.
(1)
(2)![]()
解析试题分析:(1)法一:
线段
的中点为(0,0),其垂直平分线方程为
. …2分
解方程组
所以圆
的圆心坐标为(1,1). …4分
故所求圆
的方程为:
. …6分
法二:设圆
的方程为:
,
根据题意得
…2分
解得
. …4分
故所求圆
的方程为:
. …6分
(2)由题知,四边形
的面积为
. …8分
又
,
,
所以
,而
, …10分
即
. …11分
因此要求
的最小值,只需求
的最小值即可,
即在直线
上找一点
,使得
的值最小,
所以
, …12分
所以四边形
面积的最小值为
. …13分
考点:本小题主要考查圆的标准方程的求法、直线与圆的位置关系的判断和应用,考查学生分析问题、解决问题的能力和运算求解能力.
点评:求解直线与圆的位置关系时,要注意数形结合,可以简化运算,还要注意适当转化.直线和圆所涉及到的知识是整个解析几何的基础,并渗透到解析几何的各个部分,但一般难度不大.
科目:高中数学 来源: 题型:
(本小题共13分)
已知函数
的反函数为
,数列
和
满足:
,
,
函数
的图象在点
处的切线在
轴上的截距为
.
(1)求数列{
}的通项公式;
(2)若数列
的项仅
最小,求
的取值范围;
(3)令函数
,数列
满足:
,且
,其中
.证明:
.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年北京市海淀区高三下学期期中考试数学理卷 题型:解答题
(本小题共13分)
已知每项均是正整数的数列
:
,其中等于
的项有
个
,
设
,
.
(Ⅰ)设数列
,求
;
(Ⅱ)若数列
满足
,求函数
的最小值.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年北京市丰台区高三下学期统一练习数学理卷 题型:解答题
(本小题共13分)
已知函数
,
为函数
的导函数.
(Ⅰ)设函数f(x)的图象与x轴交点为A,曲线y=f(x)在A点处的切线方程是
,求
的值;
(Ⅱ)若函数
,求函数
的单调区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com