【题目】已知方程![]()
的一个根为
.
(1)求复数
的模;
(2)若复数
满足
,且
为纯虚数,求
.
科目:高中数学 来源: 题型:
【题目】已知
两点分别在
轴和
轴上运动,且
,若动点![]()
满足
,动点
的轨迹为
.
(1)求
的方程;
(2)过点
作动直线
的平行线交轨迹
于
两点,则
是否为定值?若是,求出该值;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的方程为
,离心率为
,它的一个顶点恰好是抛物线
的焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过动点
的直线交
轴的负半轴于点
,交C于点
(
在第一象限),且
是线段
的中点,过点
作x轴的垂线交C于另一点
,延长线
交C于点
.
(i)设直线
,
的斜率分别为
,
,证明:
;
(ii)求直线
的斜率的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市食品药品监督管理局开展2019年春季校园餐饮安全检查,对本市的8所中学食堂进行了原料采购加工标准和卫生标准的检查和评分,其评分情况如下表所示:
中学编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
原料采购加工标准评分x | 100 | 95 | 93 | 83 | 82 | 75 | 70 | 66 |
卫生标准评分y | 87 | 84 | 83 | 82 | 81 | 79 | 77 | 75 |
(1)已知x与y之间具有线性相关关系,求y关于x的线性回归方程;(精确到0.1)
(2)现从8个被检查的中学食堂中任意抽取两个组成一组,若两个中学食堂的原料采购加工标准和卫生标准的评分均超过80分,则组成“对比标兵食堂”,求该组被评为“对比标兵食堂”的概率.
参考公式:
,
;
参考数据:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}为等差数列,a7﹣a2=10,且a1,a6,a21依次成等比数列.
(1)求数列{an}的通项公式;
(2)设bn
,数列{bn}的前n项和为Sn,若Sn
,求n的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,AB=2AD=2,∠DAB=60°,PA=PC=2,且平面ACP⊥平面ABCD.
(Ⅰ)求证:CB⊥PD;
(Ⅱ)求二面角C-PB-A的余弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
为椭圆
上任意一点,直线
与圆
交于
两点,点
为椭圆
的左焦点.
(Ⅰ)求椭圆
的离心率及左焦点
的坐标;
(Ⅱ)求证:直线
与椭圆
相切;
(Ⅲ)判断
是否为定值,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点P的直角坐标为
,点M的极坐标为
,若直线l过点P,且倾斜角为
,圆C以M为圆心,1为半径.
(1)求直线l的参数方程和圆C的极坐标方程.
(2)设直线l与圆C相交于AB两点,求
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com