精英家教网 > 高中数学 > 题目详情

抛物线y2=4x的焦点为F,过F且倾斜角等于数学公式的直线与抛物线在x轴上方的曲线交于点A,则AF的长为


  1. A.
    2
  2. B.
    4
  3. C.
    6
  4. D.
    8
B
分析:过点A作抛物线的准线x=-1的垂线,垂足为B,由抛物线定义可得|AB|=|AF|,进而推断AB平行于x轴根据∠AFx和∠BAF判断三角形ABF是等边三角形,过F作FC垂直于AB于点C,可知|CA|=|BC|答案可得.
解答:过点A作抛物线的准线x=-1的垂线,垂足为B,
由抛物线定义,有|AB|=|AF|,
易知AB平行于x轴,∠AFx=,∠BAF=
三角形ABF是等边三角形,过F作FC垂直于AB于点C,
则|CA|=|BC|=p=2,
故|AF|=|AB|=4.
故选B
点评:本题主要考查抛物线的应用.考查了学生对抛物线定义的理解和运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设抛物线y2=4x的焦点为F,过点M(-1,0)的直线在第一象限交抛物线于A、B,使
AF
BF
=0
,则直线AB的斜率k=(  )
A、
2
B、
2
2
C、
3
D、
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x的焦点为椭圆C的右焦点,且C的离心率e=
12
,直线y=kx+2交C于A,B两点,M是线段AB的中点,射线MO交C于点N.
(Ⅰ)试求椭圆C的标准方程;
(Ⅱ)试证在(I)的条件下,椭圆C在点N处的切线与AB平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•西城区二模)已知抛物线y2=4x的焦点为F,过点F的直线交抛物线于A,B两点.
(Ⅰ)若
AF
=2
FB
,求直线AB的斜率;
(Ⅱ)设点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•济南三模)下面给出的四个命题中:
①以抛物线y2=4x的焦点为圆心,且过坐标原点的圆的方程为(x-1)2+y2=1;
②若m=-2,则直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直;
③命题“?x∈R,使得x2+3x+4=0”的否定是“?x∈R,都有x2+3x+4≠0”;
④将函数y=sin2x的图象向右平移
π
3
个单位,得到函数y=sin(2x-
π
6
)的图象.
其中是真命题的有
①②③
①②③
(将你认为正确的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•淄博二模)已知抛物线y2=4x的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于x轴(垂足为T),与抛物线交于不同的两点P、Q且
F1P
F2Q
=-5

(I)求点T的横坐标x0
(II)若以F1,F2为焦点的椭圆C过点(1,
2
2
)

①求椭圆C的标准方程;
②过点F2作直线l与椭圆C交于A,B两点,设
F2A
F2B
,若λ∈[-2,-1],求|
TA
+
TB
|
的取值范围.

查看答案和解析>>

同步练习册答案