精英家教网 > 高中数学 > 题目详情
设抛物线y2=4x的焦点为F,过点M(-1,0)的直线在第一象限交抛物线于A、B,使
AF
BF
=0
,则直线AB的斜率k=(  )
A、
2
B、
2
2
C、
3
D、
3
3
分析:由题意可得直线AB的方程 y-0=k (x+1),k>0,代入抛物线y2=4x化简求得x1+x2 和x1•x2,进而得到y1+y2和y1•y2,由
AF
BF
=0
,解方程求得k的值.
解答:解:抛物线y2=4x的焦点F(1,0),直线AB的方程 y-0=k (x+1),k>0.
代入抛物线y2=4x化简可得 k2x2+(2k2-4)x+k2=0,
∴x1+x2=
-(2k2- 4)
k2
,x1•x2=1.
∴y1+y2=k(x1+1)+k(x2+1)=
-(2k2- 4)
k2
×k
+2k=
k
4

y1•y2=k2(x1+x2+x1•x2+1)=4.
AF
BF
=0
=(x1-1,y1)•(x2-1,y2)=x1•x2-(x1+x2)+1+y1•y2=8-
4
k2

∴k=
2
2

故选B.
点评:本题考查直线和圆锥曲线的位置关系,两个向量的数量积公式的应用,得到 8-
4
k2
=0,是解题的难点和关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设抛物线y2=4x的焦点为F,过点F的直线与抛物线交于A,B两点,过AB的中点M作准线的垂线与抛物线交于点P,若|PF|=
3
2
,则弦长|AB|等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线y2=4x的焦点为F,过点M(
1
2
,0)
的直线与抛物线相交于A,B两点,与抛物线的准线相交于点C,|BF|=2,则△BCF与△ACF的面积之比
S△BCF
S△ACF
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线 y2=4x的一条弦AB以P(
32
,1)
为中点,则该弦所在直线的斜率为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区一模)在平面直角坐标系xoy中,设抛物线y2=4x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的倾斜角为120°,那么|PF|=
4
4

查看答案和解析>>

同步练习册答案