精英家教网 > 高中数学 > 题目详情
(2013•顺义区一模)在平面直角坐标系xoy中,设抛物线y2=4x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的倾斜角为120°,那么|PF|=
4
4
分析:利用抛物线的定义,|PF|=|PA|,设F在l上的射影为F′,依题意,可求得|FF′|,|AF′|,从而可求得点P的纵坐标,代入抛物线方程可求得点P的横坐标,从而可求得|PA|.
解答:解:∵抛物线y2=4x的焦点为F,准线为l,P为抛物线上一点,
∴|PF|=|PA|,F(1,0),准线l的方程为:x=-1;
设F在l上的射影为F′,又PA⊥l,
依题意,∠AFF′=60°,|FF′|=2,
∴|AF′|=2
3
,PA∥x轴,
∴点P的纵坐标为2
3
,设点P的横坐标为x0,则(2
3
)
2
=4x0
∴x0=3,
∴|PF|=|PA|=x0-(-1)=3-(-1)=4.
故答案为:4.
点评:本题考查抛物线的简单性质,考查转化思想,考查解三角形的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•顺义区一模)在复平面内,复数
1-2i
2+i
对应的点的坐标为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区一模)已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤|f(
π
6
)|对x∈R恒成立,且f(
π
2
)<f(π).则下列结论正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区一模)函数B1的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如,函数f(x)=x+1(x∈R)是单函数.下列命题:
①函数f(x)=x2-2x(x∈R)是单函数;
②函数f(x)=
log2x, x≥2
2-x,  x<2
是单函数;
③若y=f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);
④函数f(x)在定义域内某个区间D上具有单调性,则f(x)一定是单函数.
其中的真命题是
(写出所有真命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区一模)参数方程
x=2-t
y=-1-2t
(为参数)与极坐标方程ρ=sinθ所表示的图形分别是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区一模)在△ABC中,若b=4,cosB=-
1
4
,sinA=
15
8
,则a=
2
2
,c=
3
3

查看答案和解析>>

同步练习册答案