数学英语物理化学 生物地理
数学英语已回答习题未回答习题题目汇总试卷汇总
已知抛物线的焦点为,准线与y轴的交点为为抛物线上的任意一点,且满足,则的取值范围是____ .
解析试题分析:由题意知,设,则,由得;显然当时,;当时,,因为所以,即,综上可知.考点:抛物线的定义、基本不等式,以及分类思想,考查学生的分析、计算能力.
科目:高中数学 来源: 题型:填空题
抛物线的焦点为,准线为,经过且斜率为的直线与抛物线在轴上方的部分相交于点,,垂足为,则的面积是
设是椭圆的左焦点,O为坐标原点,点P在椭圆上,则的最大值为 .
已知双曲线的左、右焦点分别为、,点在双曲线的右支上,且,则= .
在平面直角坐标系中,椭圆的中心为原点,焦点、在轴上,离心率为.过点的直线交椭圆于、两点,且的周长为16,那么椭圆的方程为 .
如图,已知过椭圆的左顶点作直线交轴于点,交椭圆于点,若是等腰三角形,且,则椭圆的离心率为 .
已知双曲线的两条渐近线与抛物线的准线分别交于两点,为坐标原点.若双曲线的离心率为2,的面积为,则 .
已知、是双曲线的两个焦点,点在此双曲线上,,如果点到轴的距离等于,那么该双曲线的离心率等于 .
如图,设椭圆的左右焦点分别为,过焦点的直线交椭圆于两点,若的内切圆的面积为,设两点的坐标分别为,则值为 .
百度致信 - 练习册列表 - 试题列表
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区