精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1+lg(x-1),x>1
g(x),x<1
的图象关于点P对称,且函数y=f(x+1)-1为奇函数,则下列结论:
①点P的坐标为(1,1);
②当x∈(-∞,0)时,g(x)>0恒成立;
③关于x的方程f(x)=a,a∈R有且只有两个实根.
其中正确结论的题号为
 
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a=lnπ,b=log52,c=e -
1
2
,则(  )
A、a<b<c
B、c<b<a
C、b<c<a
D、c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数g(x)=x2-2(x∈R),f(x)=
g(x)+x+4,x<g(x)
g(x)-x,x≥g(x)
,则f(x)的值域是(  )
A、[-
9
4
,0]∪(1,+∞)
B、[0,+∞)
C、[
9
4
,+∞)
D、[-
9
4
,0]∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2x,x≤0
log2x,x>0
,【若对任意给定的y∈(2,+∞),都存在唯一的x∈R,满足f(f(x))=2a2y2+ay,则正实数a的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某市出租车的计价标准是:3km以内(含3km)10元;超过3km但不超过18km的部分1元/km;超出18km的部分2元/km.如果某人付了22元的车费,他乘车行驶了
 
km.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x+
1
x
x∈[-2,-1]
-2,x∈[-1,
1
2
)
x-
1
x
x∈[
1
2
,2]
,函数g(x)=ax-2,x∈[-2,2],对任意x1∈[-2,2],总存在x∈[-2,2],使得g(x)=f(x)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)设f(x)=
f(x+2)(x<4)
(
1
2
)x(x≥4)
,求f(1+log23)的值;

(Ⅱ)已知g(x)=ln[(m2-1)x2-(1-m)x+1]的定义域为R,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个球的球心到过球面上A、B、C 三点的平面的距离等于球半径的一半,若AB=BC=CA=3,则球的体积为(  )
A、8π
B、
43π
4
C、12π
D、
32π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图程序框图输出的结果s=
 

查看答案和解析>>

同步练习册答案