分析 求函数的导数,利用导数和单调性之间的关系进行求解即可.
解答 解:函数f(x)=x+2+$\frac{a}{x}$,
则f′(x)=1-$\frac{a}{{x}^{2}}$,
若函数在在[$\frac{1}{2}$,+∞)上是增函数,
则f′(x)≥0在[$\frac{1}{2}$,+∞)上恒成立,
即1-$\frac{a}{{x}^{2}}$≥0,则a≤x2在[$\frac{1}{2}$,+∞)上恒成立,
∵在[$\frac{1}{2}$,+∞)上,x2≥$\frac{1}{4}$,
∴a≤$\frac{1}{4}$,
故答案为:(-∞,$\frac{1}{4}$]
点评 本题主要考查函数单调性和导数之间的关系,将函数单调性转化为f′(x)≤0或f′(x)≥0恒成立是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | 减函数且最小值是2 | B. | .减函数且最大值是2 | ||
| C. | 增函数且最小值是2 | D. | 增函数且最大值是2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 4 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com