精英家教网 > 高中数学 > 题目详情
5.函数f(x)=$\frac{x^2+2x+a}{x}$在[$\frac{1}{2}$,+∞)上是增函数,则实数a的取值范围为(-∞,$\frac{1}{4}$].

分析 求函数的导数,利用导数和单调性之间的关系进行求解即可.

解答 解:函数f(x)=x+2+$\frac{a}{x}$,
则f′(x)=1-$\frac{a}{{x}^{2}}$,
若函数在在[$\frac{1}{2}$,+∞)上是增函数,
则f′(x)≥0在[$\frac{1}{2}$,+∞)上恒成立,
即1-$\frac{a}{{x}^{2}}$≥0,则a≤x2在[$\frac{1}{2}$,+∞)上恒成立,
∵在[$\frac{1}{2}$,+∞)上,x2≥$\frac{1}{4}$,
∴a≤$\frac{1}{4}$,
故答案为:(-∞,$\frac{1}{4}$]

点评 本题主要考查函数单调性和导数之间的关系,将函数单调性转化为f′(x)≤0或f′(x)≥0恒成立是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.如果偶函数f(x)在[-7,-3]上是增函数且最小值是2,那么f(x)在[3,7]上是(  )
A.减函数且最小值是2B..减函数且最大值是2
C.增函数且最小值是2D.增函数且最大值是2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设数列{an}是公差为d的等差数列,且a5=6.
(1)若d∈N*,其数列{an}中任意连续两项的和仍为数列{an}中的项,求d的值;
(2)若a3>1,且自然数n1,n2,…,nt,…(t∈N*)满足5<n1<n2<…<n2<…,使得a3,a5,an1,…,ant,…成等比数列,求a3的所有可能值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.F是椭圆$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1的右焦点,A(1,1)为椭圆内一定点,P为椭圆上一动点,则|PA|+2|PF|的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数f(x)=$\frac{3{x}^{2}}{\sqrt{1-2x}}$+lg(1+2x)的定义域是(-$\frac{1}{2}$,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.极坐标系中,直线θ=$\frac{π}{3}$与圆ρ=$\sqrt{2}$的公共点个数是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{x-1}{x+2}$,x∈[3,5]
(1)判断函数f(x)的单调性并用定义证明你的结论.
(2)求函数f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知a、b分别为直线y=x+1的斜率与纵截距,复数z=$\frac{(a-i)(b+i)}{i}$在复平面上对应的点到原点的距离为(  )
A.1B.2C.4D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.直线2xcosα-y-3=0(α∈[$\frac{π}{6}$,$\frac{π}{3}$])的倾斜角的范围是[$\frac{π}{4}$,$\frac{π}{3}$].

查看答案和解析>>

同步练习册答案