精英家教网 > 高中数学 > 题目详情
15.直线2xcosα-y-3=0(α∈[$\frac{π}{6}$,$\frac{π}{3}$])的倾斜角的范围是[$\frac{π}{4}$,$\frac{π}{3}$].

分析 找出直线的斜率为2cosα,由α的范围确定出斜率的范围,设倾斜角为θ,tanθ即为下来范围,求出θ的范围即可.

解答 解:因为直线2xcosα-y-3=0的斜率k=2cosα,
由于α∈[$\frac{π}{6}$,$\frac{π}{3}$],所以$\frac{1}{2}$≤cosα≤$\frac{\sqrt{3}}{2}$,因此k=2cosα∈[1,$\sqrt{3}$].
设直线的倾斜角为θ,则有tanθ∈[1,$\sqrt{3}$],由于θ∈[0,π),
所以θ∈[$\frac{π}{4}$,$\frac{π}{3}$],即倾斜角的变化范围是[$\frac{π}{4}$,$\frac{π}{3}$].
故答案为:[$\frac{π}{4}$,$\frac{π}{3}$].

点评 让学生理解倾斜角的正切值为直线的斜率,会利用三角函数值确定角的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.函数f(x)=$\frac{x^2+2x+a}{x}$在[$\frac{1}{2}$,+∞)上是增函数,则实数a的取值范围为(-∞,$\frac{1}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知抛物线y2=2px(p>0)的焦 点为F,A是抛物线上横坐标为4、且位于x轴上方的点,A到抛物线准线的距离等于5.过A作AB垂直于y轴,垂足为B,OB的中点为M.
(1)求抛物线方程.
(2)以M为圆心,MB为半径作圆M,当K(m,0)是x轴上一动点时,讨论直线AK与圆M的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)已知a,b,c均为正数,证明:a2+b2+c2+($\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$)2≥6$\sqrt{3}$,并确定a,b,c为何值时,等号成立.
(2)已知a,b,c均为正实数,且a+b+c=1.求$\sqrt{4a+1}$+$\sqrt{4b+1}$+$\sqrt{4c+1}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若直线l的方向向量与平面α的法向量的夹角等于150°,则直线l与平面α所成的角等于60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.作出下列函数的图象.
(1)y=|x2-2x|+1;
(2)y=$\frac{2-x}{x-3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=excosx,记f1(x)=f′(x),f2(x)=f′1(x)),f3(x)=f′2(x)),…,则fn+1(x)=f′n(x)(n∈N+),则f2015(x)等于(  )
A.21007exsinxB.-21008excosx
C.21006ex(sinx-cosx)D.21007ex(sinx+cosx)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求函数y=$\frac{2}{x}$的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的焦点分别为F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0),P为椭圆C上任一点,$\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}$的最大值为1,求椭圆C的方程.

查看答案和解析>>

同步练习册答案