精英家教网 > 高中数学 > 题目详情
在△ABC中,M是线段BC的中点,AM=4,BC=12,则
AB
?
AC
=(  )
A、16B、-16
C、20D、-20
分析:由题意可得
AB
+
AC
=2
AM
|
AC
-
AB
|=|
BC
|=12
,两式平方相减求得
AB
AC
 的值.
解答:解:在△ABC中,M是线段BC的中点,AM=4,BC=12,
AB
+
AC
=2
AM
|
AC
-
AB
|=|
BC
|=12

AB
2
+2
AB
AC
+
AC
2
=4×16
AB
2
-2
AB
AC
+
AC
2
=BC2=144

两式相减求得
AB
AC
=-20,
故选:D.
点评:本题主要考查两个向量数量积的运算,两个向量加法的平行四边形法则,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网在平面向量中有如下定理:设点O、P、Q、R为同一平面内的点,则P、Q、R三点共线的充要条件是:存在实数t,使
OP
=(1-t)
OQ
+t
OR
.试利用该定理解答下列问题:
如图,在△ABC中,点E为AB边的中点,点F在AC边上,且CF=2FA,BF交CE于点M,设
AM
=x
AE
+y
AF
,则x+2y=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

选考题
请从下列三道题当中任选一题作答,如果多做,则按所做的第一题计分,请在答题卷上注明题号.
22-1设函数f(x)=|2x-1|+|2x-3|
(1)解不等式f(x)≤5x+1;
(2)若g(x)=
1
f(x)+m
定义域为R,求实数m的取值范围.
22-2如图,在△ABC中,CD是∠ACB的角平分线,△ACD的外接圆交BC于E,AB=2AC,
(1)求证:BE=2AD;
(2)当AC=1,BC=2时,求AD的长.
22-3已知P为半圆C:
x=cosθ
y=sinθ
(θ为参数,0≤θ≤π)
上的点,点A的坐标为(1,0),O为坐标原点,点M在射线OP上,线段OM与半圆C上的弧AP的长度均为
π
3

(1)求以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标;
(2)求直线AM的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:044

如图,在ABC中,M是边AB的中点,E是线CM的中点,AE的延长线交BCFMHAF

 

 

 

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:044

如图,在ABC中,M是边AB的中点,E是线CM的中点,AE的延长线交BCFMHAF

 

 

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年甘肃省兰州一中高三(上)12月月考数学试卷(理科)(解析版) 题型:解答题

选考题
请从下列三道题当中任选一题作答,如果多做,则按所做的第一题计分,请在答题卷上注明题号.
22-1设函数f(x)=|2x-1|+|2x-3|
(1)解不等式f(x)≤5x+1;
(2)若定义域为R,求实数m的取值范围.
22-2如图,在△ABC中,CD是∠ACB的角平分线,△ACD的外接圆交BC于E,AB=2AC,
(1)求证:BE=2AD;
(2)当AC=1,BC=2时,求AD的长.
22-3已知P为半圆上的点,点A的坐标为(1,0),O为坐标原点,点M在射线OP上,线段OM与半圆C上的弧AP的长度均为
(1)求以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标;
(2)求直线AM的参数方程.

查看答案和解析>>

同步练习册答案