精英家教网 > 高中数学 > 题目详情
(2012•东至县模拟)设a为实数,函数f(x)=x3+ax2+(a-2)x的导函数是f′(x)是偶函数,则曲线y=f(x)在原点处的切线方程为(  )
分析:欲求曲线y=f(x)在原点处的切线方程,只需求出切线的斜率即可,利用曲线的切线斜率是曲线在切点处的导数,先求函数的导函数,根据导函数是偶函数,求出a的值,就可得到切线斜率,求出切线方程.
解答:解:由f(x)=x3+ax2+(a-2)x,得,f′(x)=3x2+2ax+(a-2),
又∵f'(x)是偶函数,∴2a=0,即a=0
∴f'(x)=3x2-2,
∴曲线y=f(x)在原点处的切线斜率为-2,
曲线y=f(x)在原点处的切线方程为y=-2x
故选B
点评:本题主要考查了导数的几何意义,曲线的切线斜率是曲线在切点处的导数,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•东至县模拟)已知命题p:|x-1|+|x+1|≥3a恒成立,命题q:y=(2a-1)x为减函数,若p且q为真命题,则a的取值范围是
1
2
2
3
]
1
2
2
3
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东至县模拟)已知a,b都是正实数,且a+b=2,求证:
a2
a+1
+
b2
b+1
≥1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东至县模拟)cso15°cos30°+cos105°sin30°的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东至县模拟)已知函数f(x)=2cos(ωx+φ)(ω>0)的图象关于直线x=
π
12
对称,f(
π
3
)=0,则ω的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东至县模拟)若a>0,b>0且a+b=2,则下列不等式恒成立的是(  )

查看答案和解析>>

同步练习册答案