精英家教网 > 高中数学 > 题目详情

C.选修4 – 4 参数方程与极坐标

若两条曲线的极坐标方程分别为r = 1与r = 2cos( + ),它们相交于AB两点,求线段AB的长.

C.选修4 – 4 参数方程与极坐标

 若两条曲线的极坐标方程分别为r = 1与r = 2cos( + ),它们相交于A,B两点,求线段AB的长.

解 首先将两曲线的极坐标方程化为直角坐标方程,得

x2 + y2 = 1与x2 + y2x + y = 0……………………………………………………6分

解方程组得两交点坐标(1,0),(–, – )

所以,线段AB的长为=  

AB = .………………………………………………………………………………10分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

[选做题]在A、B、C、D四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内.
A.(选修4-1:几何证明选讲)
如图,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E,求线段AE的长.
B.(选修4-2:矩阵与变换)
已知二阶矩阵A有特征值λ1=3及其对应的一个特征向量α1=
1
1
,特征值λ2=-1及其对应的一个特征向量α2=
1
-1
,求矩阵A的逆矩阵A-1
C.(选修4-4:坐标系与参数方程)
以平面直角坐标系的原点O为极点,x轴的正半轴为极轴,建立极坐标系(两种坐标系中取相同的单位长度),已知点A的直角坐标为(-2,6),点B的极坐标为(4,
π
2
)
,直线l过点A且倾斜角为
π
4
,圆C以点B为圆心,4为半径,试求直线l的参数方程和圆C的极坐标方程.
D.(选修4-5:不等式选讲)
设a,b,c,d都是正数,且x=
a2+b2
y=
c2+d2
.求证:xy≥
(ac+bd)(ad+bc)

查看答案和解析>>

科目:高中数学 来源:2011届江苏省盐城中学高三年级随堂练习数学试卷 题型:解答题

C. 选修4-4:坐标系与参数方程.
已知在直角坐标系x0y内,直线l的参数方程为 (t为参数).以Ox为极轴建立极坐标系,圆C的极坐标方程为.
(1)写出直线l的普通方程和圆C的直角坐标方程;
(2)判断直线l和圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省高三年级随堂练习数学试卷 题型:解答题

C. 选修4-4:坐标系与参数方程.

已知在直角坐标系x0y内,直线l的参数方程为 (t为参数).以Ox为极轴建立极坐标系,圆C的极坐标方程为.

(1)写出直线l的普通方程和圆C的直角坐标方程;

 (2)判断直线l和圆C的位置关系.

 

查看答案和解析>>

科目:高中数学 来源:2010年高考试题(江苏版)解析版 题型:解答题

 [选做题]本题包括A、B、C、D四小题,请选定其中两题并在相应的答题区域内作答。若多做,则按作答的前两题评分。解答时应写出文字说明、证明过程或演算步骤。

A. 选修4-1:几何证明选讲

 

AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB延长线于点C,若DA=DC,求证:AB=2BC。

B. 选修4-2:矩阵与变换

 

在平面直角坐标系xOy中,已知点A(0,0),B(-2,0),C(-2,1)。设k为非零实数,矩阵M=,N=,点A、B、C在矩阵MN对应的变换下得到点分别为A1、B1、C1,△A1B1C1的面积是△ABC面积的2倍,求k的值。

C. 选修4-4:坐标系与参数方程

 

在极坐标系中,已知圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值。

 

D. 选修4-5:不等式选讲

 

设a、b是非负实数,求证:

 

[必做题]第22题、第23题,每题10分,共计20分。请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤。

 

 

查看答案和解析>>

科目:高中数学 来源:江苏省苏北四市2010届高三第三次模拟考试 题型:解答题

 

A.选修4-1(几何证明选讲)

如图,是边长为的正方形,以为圆心,为半径的圆弧与以为直径的交于点,延长.(1)求证:的中点;(2)求线段的长.

 

 

 

 

 

 

B.选修4-2(矩阵与变换)

已知矩阵,若矩阵属于特征值3的一个特征向量为,属于特征值-1的一个特征向量为,求矩阵

 

C.选修4-4(坐标系与参数方程)

在极坐标系中,曲线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数),求直线被曲线所截得的弦长.

 

 D.选修4—5(不等式选讲)

已知实数满足,求的最小值;

 

 

查看答案和解析>>

同步练习册答案