[Ñ¡×öÌâ]ÔÚA¡¢B¡¢C¡¢DËÄСÌâÖÐÖ»ÄÜÑ¡×ö2Ì⣬ÿСÌâ10·Ö£¬¼Æ20·Ö£®Çë°Ñ´ð°¸Ð´ÔÚ´ðÌâÖ½µÄÖ¸¶¨ÇøÓòÄÚ£®
A£®£¨Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²£©
Èçͼ£¬Ô²OµÄÖ±¾¶AB=8£¬CΪԲÖÜÉÏÒ»µã£¬BC=4£¬¹ýC×÷Ô²µÄÇÐÏßl£¬¹ýA×÷Ö±ÏßlµÄ´¹ÏßAD£¬DΪ´¹×㣬ADÓëÔ²O½»ÓÚµãE£¬ÇóÏ߶ÎAEµÄ³¤£®
B£®£¨Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»£©
ÒÑÖª¶þ½×¾ØÕóAÓÐÌØÕ÷Öµ¦Ë1=3¼°Æä¶ÔÓ¦µÄÒ»¸öÌØÕ÷ÏòÁ¿¦Á1=
1
1
£¬ÌØÕ÷Öµ¦Ë2=-1¼°Æä¶ÔÓ¦µÄÒ»¸öÌØÕ÷ÏòÁ¿¦Á2=
1
-1
£¬Çó¾ØÕóAµÄÄæ¾ØÕóA-1£®
C£®£¨Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì£©
ÒÔƽÃæÖ±½Ç×ø±êϵµÄÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¨Á½ÖÖ×ø±êϵÖÐÈ¡ÏàͬµÄµ¥Î»³¤¶È£©£¬ÒÑÖªµãAµÄÖ±½Ç×ø±êΪ£¨-2£¬6£©£¬µãBµÄ¼«×ø±êΪ(4£¬
¦Ð
2
)
£¬Ö±Ïßl¹ýµãAÇÒÇãб½ÇΪ
¦Ð
4
£¬Ô²CÒÔµãBΪԲÐÄ£¬4Ϊ°ë¾¶£¬ÊÔÇóÖ±ÏßlµÄ²ÎÊý·½³ÌºÍÔ²CµÄ¼«×ø±ê·½³Ì£®
D£®£¨Ñ¡ÐÞ4-5£º²»µÈʽѡ½²£©
Éèa£¬b£¬c£¬d¶¼ÊÇÕýÊý£¬ÇÒx=
a2+b2
£¬y=
c2+d2
£®ÇóÖ¤£ºxy¡Ý
(ac+bd)(ad+bc)
£®
·ÖÎö£ºA ÀûÓÃÌõ¼þ¡÷OBCΪÕýÈý½ÇÐΣ¬µÃ¡ÏDCA=¡ÏCBO=60¡ã£»ÔÙ½áºÏÌõ¼þµÃ¡ÏEAB=60¡ã£»×îºóÔÚRT¡÷BAEÖУ¬Çó³ö½áÂÛ¼´¿É£®
B ÏÈÉè³ö¾ØÕóA£¬¸ù¾ÝÌõ¼þÁгö¹ØÓÚ±äÁ¿µÃËĸöµÈʽ£¬½â³ö±äÁ¿¼´¿ÉÇó³ö¾ØÕóA£»½ø¶øÇó³ö¾ØÕóAµÄÄæ¾ØÕóA-1£®
C£ºÖ±½Ó¸ù¾ÝÖ±ÏßL¹ýµã£¨-2£¬6£©£¬Çãб½ÇΪ
¦Ð
4
¼´¿ÉÇó³öÖ±ÏßlµÄ²ÎÊý·½³Ì£¬Í¬ÀíµÃµ½Ô²CµÄ¼«×ø±ê·½³Ì£®
D£»Ö±½Ó¸ù¾Ý£¨a2+b2£©£¨c2+d2£©-£¨ac+bd£©2=£¨ad-bc£©2¡Ý0£¬½ø¶øµÃµ½
a2+b2
c2+d2
¡Ýac+bd£¾0£¬¢Ù£®Í¬ÀíµÃµ½£º
a2+b2
c2+d2
¡Ýad+bc£¾0  ¢Ú£»Ïà³Ë¼´¿ÉµÃ½áÂÛ£®
½â´ð£º½â£ºA¡¢Ö¤Ã÷£ºÁ¬½ÓOC£¬BE£¬AC£¬ÔòBE¡ÍAE£¬
¡ßBC=4£¬
¡àOB=OC=BC=4£¬¼´¡÷OBCΪÕýÈý½ÇÐΣ®
¡à¡ÏCBO=¡ÏCOB=60¡ã£®
ÓÖÖ±ÏßLÇÐÔ²OÓëC£¬
¡à¡ÏDCA=¡ÏCBO=60¡ã£»
¡ßAD¡ÍL£¬¡à¡ÏDAC=90¡ã-60¡ã=30¡ã£®
¶ø¡ÏOAC=¡ÏACO=
1
2
¡ÏCOB=30¡ã£®
¡à¡ÏEAB=60¡ã£®
ÔÚRT¡÷BAEÖУ¬¡ÏEBA=30¡ã£¬¡àAE=
1
2
AB=4£®
B£»½â£ºÉè¶þ½×¾ØÕóA=
.
ab
cd
.
£¬
ÔòÓÐ
.
ab
cd
.
.
1
1
.
=3
.
1
1
.
£¬ÇÒ
.
ab
cd
.
.
1
-1
.
=-
.
1
-1
.
£¬
¼´
a+b=3
a-b=-1
£¬ÇÒ
c+d=3
c-d=1
£¬
½âµÃa=1£¬b=2£¬c=2£¬d=1£®
¡àA=
.
12
2¡ä1
.
£¬´Ó¶øA-1=
.
-
1
3
2
3
2
3
-
1
3
.
£®
C£®Ö±ÏßL¹ýµã£¨-2£¬6£©£¬Çãб½ÇΪ
¦Ð
4
£®
ËùÒÔÖ±ÏߵòÎÊý·½³ÌΪ
x=-2+
2
2
t
y=6+
2
t
2
£¨tΪ²ÎÊý£©£®
ÓÖÔ²ÐÄBµÃÖ±½Ç×ø±êΪ£¨0£¬4£©£¬°ë¾¶Îª4£¬
ËùÒÔÔ²CµÃÖ±½Ç×ø±ê·½³ÌΪ£ºx2+£¨y-4£©2=16£®
½«x=¦Ñ•cos¦È£¬y=¦Ñ•sin¦È´úÈ뻯¼òµÃÔ²CµÃ¼«×ø±êΪ¦Ñ=8•sin¦È£®
D£»¡ß£¨a2+b2£©£¨c2+d2£©-£¨ac+bd£©2=£¨ad-bc£©2¡Ý0£¬
¡à£¨a2+b2£©£¨c2+d2£©¡Ý£¨ac+bd£©2£¬ÓÖa£¬b£¬c£¬d¶¼ÊÇÕýÊý£®
¡à
a2+b2
c2+d2
¡Ýac+bd£¾0£¬¢Ù£®
ͬÀí£º
a2+b2
c2+d2
¡Ýad+bc£¾0  ¢Ú£®
¢Ù¡Á¢ÚµÃ£º£¨a2+b2£©£¨c2+d2£©¡Ý£¨ac+bd£©£¨ad+bc£©£¾0£®
¡à
(a2+b2)(c2+d2)
¡Ý
(ac+bd)(ad+bc)
£¬
¡àxy¡Ý
(ac+bd)(ad+bc)
£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²é°Ñ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³ÌµÄ·½·¨£¬¼òµ¥µÄ¾ØÕóÔËËãºÍÀûÓûù±¾²»µÈʽ֤Ã÷²»µÈʽ£¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨Ñ¡×öÌ⣩ÔÚA£¬B£¬C£¬DËÄСÌâÖÐÖ»ÄÜÑ¡×ö2Ì⣬ÿСÌâ10·Ö£¬¹²¼Æ20·Ö£®ÇëÔÚ´ðÌ⿨ָ¶¨ÇøÓòÄÚ×÷´ð£¬½â´ðʱӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
A£®Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²
Èçͼ£¬¡ÑOµÄ°ë¾¶OB´¹Ö±ÓÚÖ±¾¶AC£¬MΪAOÉÏÒ»µã£¬BMµÄÑÓ³¤Ïß½»¡ÑOÓÚN£¬¹ý
NµãµÄÇÐÏß½»CAµÄÑÓ³¤ÏßÓÚP£®
£¨1£©ÇóÖ¤£ºPM2=PA•PC£»
£¨2£©Èô¡ÑOµÄ°ë¾¶Îª2
3
£¬OA=
3
OM£¬ÇóMNµÄ³¤£®
B£®Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÇúÏßx2+4xy+2y2=1ÔÚ¶þ½×¾ØÕóM=
.
1a
b1
.
µÄ×÷ÓÃϱ任ΪÇúÏßx2-2y2=1£¬ÇóʵÊýa£¬bµÄÖµ£»
C£®Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚ¼«×ø±êϵÖУ¬Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=
2
cos(¦È+
¦Ð
4
)
£¬ÒÔ¼«µãΪԭµã£¬¼«ÖáΪxÖáµÄÕý°ëÖὨÁ¢Æ½ÃæÖ±½Ç×ø±êϵ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
x=1+
4
5
y=-1-
3
5
£¨tΪ²ÎÊý£©£¬ÇóÖ±Ïßl±»Ô²CËù½ØµÃµÄÏÒ³¤£®
D£®Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
Éèa£¬b£¬c¾ùΪÕýʵÊý£®
£¨1£©Èôa+b+c=1£¬Çóa2+b2+c2µÄ×îСֵ£»
£¨2£©ÇóÖ¤£º
1
2a
+
1
2b
+
1
2c
¡Ý
1
b+c
+
1
c+a
+
1
a+b
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ñ¡×öÌ⣺ÔÚA¡¢B¡¢C¡¢DËÄСÌâÖÐÖ»ÄÜÑ¡×ö2Ì⣬ÿСÌâ10·Ö£¬¹²20·Ö£®½â´ðӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
A£®Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²
Èçͼ£¬PAÇСÑOÓÚµãA£¬DΪPAµÄÖе㣬¹ýµãDÒý¸îÏß½»¡ÑOÓÚB¡¢CÁ½µã£®ÇóÖ¤£º¡ÏDPB=¡ÏDCP£®
B£®Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÉèM=
.
10
02
.
£¬N=
.
1
2
0
01
.
£¬ÊÔÇóÇúÏßy=sinxÔÚ¾ØÕóMN±ä»»ÏµÄÇúÏß·½³Ì£®
C£®Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚ¼«×ø±êϵÖУ¬Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=
2
cos(¦È+
¦Ð
4
)
£¬ÒÔ¼«µãΪԭµã£¬¼«ÖáΪxÖáµÄÕý°ëÖὨÁ¢Æ½ÃæÖ±½Ç×ø±êϵ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
x=1+
4
5
t
y=-1-
3
5
t
£¨tΪ²ÎÊý£©£¬ÇóÖ±Ïßl±»Ô²CËù½ØµÃµÄÏÒ³¤£®
D£®Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
½â²»µÈʽ£º|2x+1|-|x-4|£¼2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨Ñ¡×öÌ⣩ÔÚA¡¢B¡¢C¡¢DËÄСÌâÖÐÖ»ÄÜÑ¡×ö2Ì⣬ÿСÌâ10·Ö£¬¹²¼Æ20·Ö£®ÇëÔÚ´ð¾íÖ½Ö¸¶¨ÇøÓòÄÚ×÷´ð£®½â´ðӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
£¨B£©£¨Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»£©
¶þ½×¾ØÕóMÓÐÌØÕ÷Öµ¦Ë=8£¬Æä¶ÔÓ¦µÄÒ»¸öÌØÕ÷ÏòÁ¿e=
1
1
£¬²¢ÇÒ¾ØÕóM¶ÔÓ¦µÄ±ä»»½«µã£¨-1£¬2£©±ä»»³Éµã£¨-2£¬4£©£¬Çó¾ØÕóM2£®
£¨C£©£¨Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì£©
ÒÑÖª¼«×ø±êϵµÄ¼«µãÔÚÖ±½Ç×ø±êϵµÄÔ­µã£¬¼«ÖáÓëxÖáµÄÕý°ëÖáÖغϣ¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2cos2¦È+3¦Ñ2sin2¦È=3£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
x=-
3
t
y=1+t
£¨tΪ²ÎÊý£¬t¡ÊR£©£®ÊÔÔÚÇúÏßCÉÏÒ»µãM£¬Ê¹Ëüµ½Ö±ÏßlµÄ¾àÀë×î´ó£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

 Ñ¡×öÌ⣨ÔÚA¡¢B¡¢C¡¢DËÄСÌâÖÐÖ»ÄÜÑ¡×öÁ½Ì⣬²¢½«Ñ¡×÷±ê¼ÇÓÃ2BǦ±ÊÍ¿ºÚ£¬Ã¿Ð¡Ìâ10·Ö£¬¹²20·Ö£¬ÇëÔÚ´ðÌâÖ¸¶¨ÇøÓòÄÚ×÷´ð£¬½â´ðʱӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裩£®
A¡¢£¨Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²£©
Èçͼ£¬BDΪ¡ÑOµÄÖ±¾¶£¬AB=AC£¬AD½»BCÓÚE£¬ÇóÖ¤£ºAB2=AE•AD
B¡¢£¨Ñ¡ÐÞ4-2£º¾ØÐÎÓë±ä»»£©
ÒÑÖªa£¬bʵÊý£¬Èç¹û¾ØÕóM=
1a
b2
Ëù¶ÔÓ¦µÄ±ä»»½«Ö±Ïß3x-y=1±ä»»³Éx+2y=1£¬Çóa£¬bµÄÖµ£®
C¡¢£¨Ñ¡ÐÞ4-4£¬£º×ø±êϵÓë²ÎÊý·½³Ì£©
ÉèM¡¢N·Ö±ðÊÇÇúÏߦÑ+2sin¦È=0ºÍ¦Ñsin£¨¦È+
¦Ð
4
£©=
2
2
ÉϵĶ¯µã£¬ÅжÏÁ½ÇúÏßµÄλÖùØϵ²¢ÇóM¡¢N¼äµÄ×îС¾àÀ룮
D¡¢£¨Ñ¡ÐÞ4-5£º²»µÈʽѡ½²£©
Éèa£¬b£¬cÊDz»ÍêÈ«ÏàµÈµÄÕýÊý£¬ÇóÖ¤£ºa+b+c£¾
ab
+
bc
+
ca
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ñ¡×öÌ⣺ÔÚA¡¢B¡¢C¡¢DËÄСÌâÖÐÖ»ÄÜÑ¡×ö2Ì⣬ÿСÌâ10·Ö£¬¹²¼Æ20·Ö£®ÇëÔÚ´ð¾íÖ½Ö¸¶¨ÇøÓòÄÚ×÷´ð£®½â´ðӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
A£®Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²
Èçͼ£¬ADÊÇ¡ÏBACµÄƽ·ÖÏߣ¬¡ÑO¹ýµãAÇÒÓëBC±ßÏàÇÐÓÚµãD£¬ÓëAB¡¢AC·Ö±ð½»ÓÚE£¬F£¬ÇóÖ¤£ºEF¡ÎBC£®

B£®Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÒÑÖªa£¬b¡ÊRÈô¾ØÕóM=
.
-1a
b3
.
Ëù¶ÔÓ¦µÄ±ä»»°ÑÖ±Ïßl£º2x-y=3±ä»»Îª×ÔÉí£¬Çóa£¬bµÄÖµ£®

C£®Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
½«²ÎÊý·½³Ì
x=2(t+
1
t
)
y=4(t-
1
t
)
£¨tΪ²ÎÊý£©»¯ÎªÆÕͨ·½³Ì£®
D£®Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
ÒÑÖªa£¬bÊÇÕýÊý£¬ÇóÖ¤£º£¨a+
1
b
£©£¨2b+
1
2a
£©¡Ý
9
2
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸