精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若上为单调递增,求实数的取值范围;

(2)若,且,求证:对定义域内的任意实数,不等式恒成立.

【答案】(1);(2)证明见解析.

【解析】

1)根据函数单调递增可得,将问题转化为上恒成立;利用导数求解出的最小值,从而得到的取值范围;(2)将问题转化为证明当时,,在时分别得到需恒成立的不等式;令,通过导数研究单调性,结合可证得结论.

(1)由已知的定义域为

所以

上单调递增

对任意,都有

时,;当时,

函数上单调递增,在上单调递减

因为时,总有

(2)当时,

对定义域内的任意正数,不等式恒成立,即时,

因为当时,;当时,

所以只须证:当时,;当时,

,则

时,;当时,

所以的极值点,从而有极小值,即最小值

所以恒成立

上单调递增,又因为

所以当时,,即恒成立;

时,,即恒成立

所以,对定义域内的任意实数,不等式恒成立

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】今年3月5日,国务院总理李克强作的政府工作报告中,提到要“惩戒学术不端,力戒学术不端,力戒浮躁之风”.教育部日前公布的《教育部2019年部门预算》中透露,2019年教育部拟抽检博士学位论文约6000篇,预算为800万元.国务院学位委员会、教育部2014年印发的《博士硕士学位论文抽检办法》通知中规定:每篇抽检的学位论文送3位同行专家进行评议,3位专家中有2位以上(含2位)专家评议意见为“不合格”的学位论文,将认定为“存在问题学位论文”.有且只有1位专家评议意见为“不合格”的学位论文,将再送2位同行专家进得复评,2位复评专家中有1位以上(含1位)专家评议意见为“不合格”的学位论文,将认定为“存在问题学位论文”.设每篇学位论文被每位专家评议为“不合格”的概率均为,且各篇学位论文是否被评议为“不合格”相互独立.

(1)记一篇抽检的学位论文被认定为“存在问题学位论文”的概率为,求

(2)若拟定每篇抽检论文不需要复评的评审费用为900元,需要复评的评审费用为1500元;除评审费外,其它费用总计为100万元.现以此方案实施,且抽检论文为6000篇,问是否会超过预算?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是函数的极值点.

(Ⅰ)求实数的值;

(Ⅱ)求证:函数存在唯一的极小值点,且.

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线),焦点为,直线交抛物线两点,的中点,且

(1)求抛物线的方程;

(2)若,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某技术人员在某基地培育了一种植物,一年后,该技术人员从中随机抽取了部分这种植物的高度(单位:厘米)作为样本(样本容量为)进行统计,绘制了如下频率分布直方图,已知抽取的样本植物高度在内的植物有8,内的植物有2.

(Ⅰ)求样本容量和频率分布直方图中的,的值;

(Ⅱ)在选取的样本中,从高度在内的植物中随机抽取3,设随机变量表示所抽取的3株高度在内的株数,求随机变量的分布列及数学期望;

(Ⅲ)据市场调研,高度在内的该植物最受市场追捧.老王准备前往该基地随机购买该植物50.现有两种购买方案,方案一:按照该植物的不同高度来付费,其中高度在内的每株10,其余高度每株5;方案二:按照该植物的株数来付费,每株6.请你根据该基地该植物样本的统计分析结果为决策依据,预测老王采取哪种付费方式更便宜?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的奇函数,当时,.则下列结论正确的是( ).

A.时,

B.函数有五个零点

C.若关于的方程有解,则实数的取值范围是

D.恒成立

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,四边形满足,点的中点,点边上的动点,且.

(1)求证:平面平面

(2)是否存在实数,使得二面角的余弦值为?若存在,试求出实数的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知px2-(3+a)x+3a<0,其中a<3;qx2+4x-5>0.

(1)若pq的必要不充分条件,求实数a的取值范围;

(2)若pq的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=lnxx2+axaR

(Ⅰ)证明lnxx1

(Ⅱ)若a≥1,讨论函数fx)的零点个数.

查看答案和解析>>

同步练习册答案