精英家教网 > 高中数学 > 题目详情
(文)已知函数f(x)=
1
3
x3-
1
2
x2
,其定义域为[-2,t](t>-2),设f(-2)=m,f(t)=n.
(Ⅰ)试确定t的取值范围,使得函数f(x)在[-2,t]上为单调函数;
(Ⅱ)试判断m,n的大小并说明理由.
分析:(Ⅰ)已知函数f(x)=
1
3
x3-
1
2
x2
,求其导数f′(x),根据导数求其单调区间,从而确定t的范围;
(Ⅱ)由f(x)在(-∞,0),(1,+∞)上递增,在(0,1)上递减,所以f(x)在x=1处取得极小值,算出来,根据f(-2)=m,f(t)=n.进行判断;
解答:解:(Ⅰ)因为f′(x)=x(x-1)
由f′(x)>0⇒x>1或x<0;
由f′(x)<0⇒0<x<1,
所以f(x)在(-∞,0),(1,+∞)上递增,在(0,1)上递减
要使f(x)在[-2,t]上为单调函数,则-2<t≤0
(Ⅱ)n>m.
因为f(x)在(-∞,0),(1,+∞)上递增,
在(0,1)上递减,所以f(x)在x=1处取得极小值-
1
6

f(-2)=-
5
3
<-
1
6
,所以f(x)在[-2,+∞)上的最小值为f(-2)(8分)
从而当t>-2时,f(-2)<f(t),即m<n
点评:此题主要考查利用导数求函数的极值及单调区间,此题的函数求导比较简单,注意单调区间的书写;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文)已知函数f(x)=2x-
12|x|

(1)若f(x)=2,求x的值;
(2)若2tf(2t)+mf(t)≥0对于t∈[2,3]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•松江区模拟)(文)已知函数f(x)=ax2-2
4+2b-b2
x
g(x)=-
1-(x-a)2
,(a,b∈R)
(Ⅰ)当b=0时,若f(x)在[2,+∞)上单调递增,求a的取值范围;
(Ⅱ)求满足下列条件的所有实数对(a,b):当a是整数时,存在x0,使得f(x0)是f(x)的最大值,g(x0)是g(x)的最小值;
(Ⅲ)对满足(Ⅱ)的条件的一个实数对(a,b),试构造一个定义在D={x|x>-2,且x≠2k-2,k∈N}上的函数h(x),使当x∈(-2,0)时,h(x)=f(x),当x∈D时,h(x)取得最大值的自变量的值构成以x0为首项的等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)已知函数f(x)=
3
sin2x+2cos2x+2

(Ⅰ)求f(x)的最小正周期与单调递减区间;
(Ⅱ)当0≤x≤
π
2
时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)已知函数f(x)=
x2-x,(x≤0)
1+2lgx,(x>0)
,f(x)=2,则x=
 

查看答案和解析>>

同步练习册答案